CSIT REPORT
Release rIs2001

Feb 19, 2020



CONTENTS

1 Introduction 1
1.1 Report History . . . . . . . e e e e e e 1
1.2 ReportStructure . . . . . . . . e e e 1
1.3 TestScenarios . . . . . . . . e e e e e e 3
1.4 Physical Testbeds . . . . . . . . . e e e 4
1.5 TestMethodology . . . . . . . . . e e 13

2 VPP Performance 37
2.1 OVEIVIEW . o o e e e e 37
2.2 Release Notes . . . . . . . e e 44
2.3 Packet Throughput . . . . . . . . . . . e 47
24 Speedup MUlti-Core . . . . . . . e 124
2.5 PacketLatency . . . . . . . e 201
2.6 COoMPAriSONS . . v v vt e e e e e e e e e e e e 299
2.7 Throughput Trending . . . . . . . . . e e 303
2.8 TestEnvironment. . . . . . . . . e e 304
2.9 Documentation . . . . . . . L e e e e e 339

3 DPDK Performance 345
3.1 OVEIVIEW . o o e e e e e e e 345
3.2 Release NOtes . . . . . . o i i e 347
3.3 Packet Throughput . . . . . . . . . . e e 349
3.4 PacketLatency . . . . . . . e e 375
3.5 CompariSoNs . . . o i e e e e e e e e e e 382
3.6 Throughput Trending . . . . . . . . . . e 382
3.7 TestEnvironment. . . . . . . ... e e 384
3.8 Documentation . . . . . . .. e e e e e e 418

4 VPP Device 419
A1 OVEIVIEW . . i e e e e e e e e e e e e 419
42 Release Notes . . . . . . . i e e e 423
4.3 Integration Tests . . . . . . e e e 423
4.4 Documentation . . . . . . e e 432

5 CSIT Framework 433
5.1 DESIgN . . o i e e e e e e e e e e 433
52 TestNaming . . . . . . o o e e e e 436
5.3 Presentationand Analytics . . . . . . .. e 438
54 CSITRF Tags Descriptions . . . . . . . . . i i i e e e e e e e e e e e 466

Bibliography 482




CHAPTER
ONE

INTRODUCTION

1.1 Report History

FD.io CSIT-2001 Report history and per .[ww] revision changes are listed below.

.[ww] Revision Changes
.08

1. Added PDF version
2. Added data:
e VPP performance tests 3n-hsw
e VPP performance tests 3n-tsh
e VPP MRR tests 3n-tsh
e DPDK performance tests 3n-tsh
3. Chapters “Detailed Results”, “Test Configu-
ration” and “Test Operational Data” split into
sub-chapters.

.07 Initial version

FD.io CSIT Reports follow CSIT-[yy][mm].[ww] numbering format, with version denoted by concatenation
of two digit year [yy] and two digit month [mm], and maintenance revision identified by two digit calendar
week number [ww].

1.2 Report Structure

FD.io CSIT-2001 report contains system performance and functional testing data of VPP-20.01 release.
PDF version of this report! is available for download.

CSIT-2001 report is structured as follows:
1. INTRODUCTION: General introduction to FD.io CSIT-2001.
e Introduction: This section.
e Test Scenarios Overview: A brief overview of test scenarios covered in this report.
¢ Physical Testbeds: Description of physical testbeds.
¢ Test Methodology: Performance benchmarking and functional test methodologies.
2. VPP PERFORMANCE: VPP performance tests executed in physical FD.io testbeds.
e Overview: Tested logical topologies, test coverage and naming specifics.

¢ Release Notes: Changes in CSIT-2001, added tests, environment or methodology changes,
known issues.

1 https://docs.fd.io/csit/rls2001/report/_static/archive/csit_rls2001.08.pdf



https://docs.fd.io/csit/rls2001/report/_static/archive/csit_rls2001.08.pdf

CSIT REPORT, Release rls2001

Packet Throughput: NDR, PDR throughput graphs based on results from repeated same test
job executions to verify repeatibility of measurements.

e Speedup Multi-Core: NDR, PDR throughput multi-core speedup graphs based on results from
test job executions.

e Packet Latency: Latency graphs based on results from test job executions.
e Soak Tests: Long duration soak tests are executed using PLRsearch algorithm.

e NFV Service Density: Network Function Virtualization (NFV) service density tests focus on
measuring total per server throughput at varied NFV service “packing” densities with vswitch
providing host dataplane.

e Comparisons: Performance comparisons between VPP releases and between different testbed
types.

e Throughput Trending: References to continuous VPP performance trending.

e Test Environment: Performance test environment configuration.

¢ Documentation: Pointers to CSIT source code documentation for VPP performance tests.
3. DPDK PERFORMANCE: DPDK performance tests executed in physical FD.io testbeds.

e Overview: Tested logical topologies, test coverage.

¢ Release Notes: Changes in CSIT-2001, known issues.

e Packet Throughput: NDR, PDR throughput graphs based on results from repeated same test
job executions to verify repeatibility of measurements.

e Packet Latency: Latency graphs based on results from test job executions.

e Comparisons: Performance comparisons between DPDK releases and between different
testbed types.

e Throughput Trending: References to regular DPDK performance trending.

e Test Environment: Performance test environment configuration.

¢ Documentation: Pointers to CSIT source code documentation for DPDK performance tests.
4. VPP DEVICE: VPP functional tests executed in physical FD.io testbeds using containers.

e Overview: Tested virtual topologies, test coverage and naming specifics;

e Release Notes: Changes in CSIT-2001, added tests, environment or methodology changes,
known issues.

¢ Integration Tests: Functional test environment configuration.
¢ Documentation: Pointers to CSIT source code documentation for VPP functional tests.

5. DETAILED RESULTS: Detailed result tables auto-generated from CSIT test job executions using RF
(Robot Framework) output files as sources.

¢ VPP Performance NDR/PDR: VPP NDR/PDR throughput and latency.
e VPP Performance MRR: VPP MRR throughput.
o DPDK Performance: DPDK Testpmd and L3fwd NDR/PDR throughput and latency.

6. TEST CONFIGURATION: VPP DUT configuration data based on VPP API Test (VAT) Commands
History auto-generated from CSIT test job executions using RF output files as sources.

¢ VPP Performance NDR/PDR: Configuration data.
¢ VPP Performance MRR: Configuration data.

7. TEST OPERATIONAL DATA: VPP DUT operational data auto-generated from CSIT test job execu-
tions using RFoutput files as sources.

e VPP Performance NDR/PDR: VPP show run outputs under test load.

2 Chapter 1. Introduction



CSIT REPORT, Release rls2001

8. CSIT FRAMEWORK DOCUMENTATION: Description of the overall FD.io CSIT framework.
e Design: Framework modular design hierarchy.
e Test naming: Test naming convention.
¢ Presentation and Analytics Layer: Description of PAL CSIT analytics module.

o CSIT RF Tags Descriptions: CSIT RF Tags used for test suite and test case grouping and selec-
tion.

1.3 Test Scenarios

FD.io CSIT-2001 report includes multiple test scenarios of VPP centric applications, topologies and use
cases. In addition it also covers baseline tests of DPDK sample applications. Tests are executed in physical
(performance tests) and virtual environments (functional tests).

Brief overview of test scenarios covered in this report:

1. VPP Performance: VPP performance tests are executed in physical FD.io testbeds, focusing on
VPP network data plane performance in NIC-to-NIC switching topologies. Tested across Intel Xeon
Haswell and Skylake servers, ARM, Denverton, range of NICs (10GE, 25GE, 40GE) and multi-
thread/multi-core configurations. VPP application runs in bare-metal host user-mode handling
NICs. TRex is used as a traffic generator.

2. VPP Vhostuser Performance with KVM VMs: VPP VM service switching performance tests using
vhostuser virtual interface for interconnecting multiple NF-in-VM instances. VPP vswitch instance
runs in bare-metal user-mode handling NICs and connecting over vhost-user interfaces to VM in-
stances each running VPP with virtio virtual interfaces. Similarly to VPP Performance, tests are run
across a range of configurations. TRex is used as a traffic generator.

3. VPP Memif Performance with LXC and Docker Containers: VPP Container service switching per-
formance tests using memif virtual interface for interconnecting multiple VPP-in-container in-
stances. VPP vswitch instance runs in bare-metal user-mode handling NICs and connecting over
memif (Slave side) interfaces to more instances of VPP running in LXC or in Docker Containers, both
with memif interfaces (Master side). Similarly to VPP Performance, tests are run across a range of
configurations. TRex is used as a traffic generator.

4. DPDK Performance: VPP uses DPDK to drive the NICs and physical interfaces. DPDK performance
tests are used as a baseline to profile performance of the DPDK sub-system. Two DPDK applications
are tested: Testpmd and L3fwd. DPDK tests are executed in the same testing environment as VPP
tests. DPDK Testpmd and L3fwd applications run in host user-mode. TRex is used as a traffic
generator.

5. VPP Functional: VPP functional tests are executed in virtual FD.io testbeds, focusing on VPP packet
processing functionality, including both network data plane and in-line control plane. Tests cover
VNIC-to-vNIC vNIC-to-nestedVM-to-vNIC forwarding topologies. Scapy is used as a traffic gener-
ator.

All CSIT test data included in this report is auto- generated from RF (Robot Framework) output. xml files
produced by LF (Linux Foundation) FD.io Jenkins jobs executed against VPP-20.01 release artifacts. Ref-
erences are provided to the original FD.io Jenkins job results and all archived source files.

FD.io CSIT system is developed using two main coding platforms: RF and Python2.7. CSIT-2001
source code for the executed test suites is available in CSIT branch rls2001 in the directory ./tests/
<name_of_the_test_suite>. A local copy of CSIT source code can be obtained by cloning CSIT git repos-
itory - git clone https://gerrit.fd.io/r/csit.

1.3. Test Scenarios 3



CSIT REPORT, Release rls2001

1.4 Physical Testbeds

All FD.io (Fast Data Input/Ouput) CSIT (Continuous System Integration and Testing) performance test
results included in this report are executed on the physical testbeds hosted by LF FD.io project, unless
otherwise noted.

Two physical server topology types are used:

¢ 2-Node Topology: Consists of one server acting as a System Under Test (SUT) and one server acting
as a Traffic Generator (TG), with both servers connected into a ring topology. Used for executing
tests that require frame encapsulations supported by TG.

¢ 3-Node Topology: Consists of two servers acting as a Systems Under Test (SUTs) and one server
acting as a Traffic Generator (TG), with all servers connected into a ring topology. Used for executing
tests that require frame encapsulations not supported by TG e.g. certain overlay tunnel encapsu-
lations and IPsec. Number of native Ethernet, IPv4 and IPvé encapsulation tests are also executed
on these testbeds, for comparison with 2-Node Topology.

Current FD.io production testbeds are built with SUT servers based on the following processor architec-
tures:

e Intel Xeon: Skylake Platinum 8180, Haswell-SP E5-2699v3, Cascade Lake Platinum 8280, Cascade
Lake 6252N.

e Intel Atom: Denverton C3858.
e ARM: TaiShan 2280, hip07-d05.

Server SUT performance depends on server and processor type, hence results for testbeds based on
different servers must be reported separately, and compared if appropriate.

Complete technical specifications of compute servers used in CSIT physical testbeds are maintained in
FD.io CSIT repository: https:/git.fd.io/csit/tree/docs/lab/testbed_specifications.md.

Following is the description of existing production testbeds.

1.4.1 2-Node Xeon Cascade Lake (2n-clx)

Three 2n-clx testbeds are in operation in FD.io labs. Each 2n-cIx testbed is built with two SuperMicro
SYS-7049GP-TRT servers, SUTs are equipped with two Intel Xeon Gold 6252N processors (35.75 MB
Cache, 2.30 GHz, 24 cores). TGs are equiped with Intel Xeon Cascade Lake Platinum 8280 processors
(38.5 MB Cache, 2.70 GHz, 28 cores). 2n-clx physical topology is shown below.

4 Chapter 1. Introduction


https://git.fd.io/csit/tree/docs/lab/testbed_specifications.md

CSIT REPORT, Release rls2001

2-Node Xeon Cascade Lake (2n-clx)

System Under Test (SUT)

X86 ( X J X X X Y ¥ X X Y )
Servery ®"®eo®®o® DR/ ooo OO®
oo ooe oo oo

Socket O Socket 1
Intel Xeon UPI Intel Xeon
Gold 6252N Gold 6252N

Socket O Socket 1
Intel Xeon §]=]] Intel Xeon
Platinum 8280 Platinum 8280
x86 oo e oee C XY T X X X))
aoeeeee® DDR4 C Y T X X X))
Server "oeoeoe® oooooe

Traffic Generator (TG)

SUT servers are populated with the following NIC models:

1.

vk N

NIC-1: x710-DA4 4p10GE Intel.

NIC-2: xxv710-DA2 2p25GE Intel.

NIC-3: mcx556a-edat ConnectX5 2p100GE Mellanox. (Only testbed t27, t28)
NIC-4: empty, future expansion.

NIC-5: empty, future expansion.

1.4. Physical Testbeds 5



CSIT REPORT, Release rls2001

6.

NIC-6: empty, future expansion.

TG servers run T-Rex application and are populated with the following NIC models:

o ok e

6.

NIC-1: x710-DA4 4p10GE Intel.

NIC-2: xxv710-DA2 2p25GE Intel.

NIC-3: mcx556a-edat ConnectX5 2p100GE Mellanox. (Only testbed t27, t28)
NIC-4: empty, future expansion.

NIC-5: empty, future expansion.

NIC-6: x710-DA4 4p10GE Intel. (For self-tests.)

All Intel Xeon Cascade Lake servers run with Intel Hyper-Threading enabled, doubling the number of
logical cores exposed to Linux.

1.4.2 2-Node Xeon Skylake (2n-skx)

Four 2n-skx testbeds are in operation in FD.io labs. Each 2n-skx testbed is built with two SuperMicro
SYS-7049GP-TRT servers, each in turn equipped with two Intel Xeon Skylake Platinum 8180 processors
(38.5 MB Cache, 2.50 GHz, 28 cores). 2n-skx physical topology is shown below.

Chapter 1. Introduction



CSIT REPORT, Release rls2001

2-Node Xeon Skylake (2n-skx)

System Under Test (SUT)

x86
Server

Y Y X X X
oee ee® DDR4
Y I X X X

Socket O
Intel Xeon
Platinum 8180

UPI

Platinum 8180

Socket 1
Intel Xeon

Socket O
Intel Xeon
Platinum 8180

UPI

Platinum 8180

Socket 1
Intel Xeon

x86 X X X ¥ X ooe oeoe

oeoeeee DDRf eoeooooe

Server ®*oooee ooooee
Traffic Generator (TG)

SUT servers are populated with the following NIC models:
1. NIC-1: x710-DA4 4p10GE Intel.
NIC-2: xxv710-DA2 2p25GE Intel.

NIC-4: empty, future expansion.

LA N

NIC-5: empty, future expansion.

NIC-3: mcx556a-edat ConnectX5 2p100GE Mellanox. (Not used yet.)

1.4. Physical Testbeds



CSIT REPORT, Release rls2001

6. NIC-6: empty, future expansion.
TG servers run T-Rex application and are populated with the following NIC models:
NIC-1: x710-DA4 4p10GE Intel.
NIC-2: xxv710-DA2 2p25GE Intel.
NIC-3: mcx556a-edat ConnectX5 2p100GE Mellanox. (Not used yet.)

NIC-4: empty, future expansion.

o ok e

NIC-5: empty, future expansion.
6. NIC-6: x710-DA4 4p10GE Intel. (For self-tests.)

All Intel Xeon Skylake servers run with Intel Hyper-Threading enabled, doubling the number of logical
cores exposed to Linux, with 56 logical cores and 28 physical cores per processor socket.

1.4.3 3-Node Xeon Skylake (3n-skx)

Two 3n-skx testbeds are in operation in FD.io labs. Each 3n-skx testbed is built with three SuperMicro
SYS-7049GP-TRT servers, each in turn equipped with two Intel Xeon Skylake Platinum 8180 processors
(38.5 MB Cache, 2.50 GHz, 28 cores). 3n-skx physical topology is shown below.

3-Node Xeon Skylake (3n-skx)

System Under Test 1 (SUT1) System Under Test 2 (SUT2)
Server Qoaess "NV coaeas Server Qoaess "V cocasae

Socket O Socket 1 Socket O Socket 1

Intel Xeon Intel Xeon

Intel Xeon Intel Xeon
Platinum 8180 Platinum 8180 Platinum 8180 Platinum 8180

PCle PCle
Gen3 Gen3

I L L (L]

— NIC1 7 NIC2 7 NIC3 = NIC4 7 NIC5 7 NIC6 —]
PCle
Gen3

Socket O Socket 1

Intel Xeon UPI Intel Xeon

Platinum 8180 Platinum 8180

x86 - @ @& @ ® ® oo oo

eoeeeee DDR4 X X T
Server L X X I X I J L X J X X I J

Traffic Generator (TG)

SUT1 and SUT2 servers are populated with the following NIC models:
1. NIC-1: x710-DA4 4p10GE Intel.
2. NIC-2: xxv710-DA2 2p25GE Intel.
3. NIC-3: empty, future expansion.
4. NIC-4: empty, future expansion.

8 Chapter 1. Introduction



CSIT REPORT, Release rls2001

5. NIC-5: empty, future expansion.
6. NIC-6: empty, future expansion.
TG servers run T-Rex application and are populated with the following NIC models:
NIC-1: x710-DA4 4p10GE Intel.
NIC-2: xxv710-DA2 2p25GE Intel.
NIC-3: empty, future expansion.

NIC-4: empty, future expansion.

o ok v bd e

NIC-5: empty, future expansion.
6. NIC-6: x710-DA4 4p10GE Intel. (For self-tests.)

All Intel Xeon Skylake servers run with Intel Hyper-Threading enabled, doubling the number of logical
cores exposed to Linux, with 56 logical cores and 28 physical cores per processor socket.

1.4.4 3-Node Xeon Haswell (3n-hsw)

Three 3n-hsw testbeds are in operation in FD.io labs. Each 3n-hsw testbed is built with three Cisco UCS-
c240m3 servers, each in turn equipped with two Intel Xeon Haswell-SP E5-2699v3 processors (45 MB
Cache, 2.3 GHz, 18 cores). 3n-hsw physical topology is shown below.

3-Node Xeon Haswell (3n-hsw)

System Under Test 1 (SUT1) System Under Test 2 (SUT2)
Server eas M ooa Server eaa M ooa

Socket O Socket 1 Socket O Socket 1

Intel Xeon Intel Xeon Intel Xeon Intel Xeon
E5-2699v3 E5-2699v3 E5-2699v3 E5-2699v3

e B aag | &0 @ e

NIC1 [ NIC2 [ NIC3 NIC4 [T NIC5 [T NIC6 NIC1 [ NIC2 | NIC3 NIC4 [T NIC5 7 NIC6

LN W (U
|

HRIRARA R ATAR Y

—— NIC1 7 NIC2 7 NIC3 — NIC4 [ NIC5 7 NIC6 —]

Socket O Socket 1
Intel Xeon QPI Intel Xeon
E5-2699v3 E5-2699v3

x86 @@e DR oo
Server o ooe
Traffic Generator (TG)

SUT1 and SUT2 servers are populated with the following NIC models:
1. NIC-1: VIC 1385 2p40GE Cisco.
2. NIC-2: NIC x520 2p10GE Intel.
3. NIC-3: empty.

1.4. Physical Testbeds 9



CSIT REPORT, Release rls2001

4. NIC-4: NIC xI710-QDA2 2p40GE Intel.
5. NIC-5: NIC x710-DA2 2p10GE Intel.
6. NIC-6: QAT 8950 50G (Walnut Hill) Intel.

TG servers run T-Rex application and are populated with the following NIC models:

6.

vk Db

NIC-1:
NIC-2:
NIC-3:
NIC-4:
NIC-5:
NIC-6:

NIC xI710-QDA2 2p40GE Intel.

NIC x710-DA2 2p10GE Intel.

empty.

NIC x1710-QDA2 2p40GE Intel.

NIC x710-DA2 2p10GE Intel.

NIC x710-DA2 2p10GE Intel. (For self-tests.)

All Intel Xeon Haswell servers run with Intel Hyper-Threading disabled, making the number of logical
cores exposed to Linux match the number of 18 physical cores per processor socket.

1.4.5 2-Node Atom Denverton (2n-dnv)

2n-dnv testbed is built with: i) one Intel S2600WFT server acting as TG and equipped with two Intel
Xeon Skylake Platinum 8180 processors (38.5 MB Cache, 2.50 GHz, 28 cores), and ii) one SuperMicro
SYS-E300-9A server acting as SUT and equipped with one Intel Atom C3858 processor (12 MB Cache,
2.00 GHz, 12 cores). 2n-dnv physical topology is shown below.

10

Chapter 1. Introduction



CSIT REPORT, Release rls2001

2-Node Atom Denverton (2n-dnv)

System Under Test (SUT)

x86

oooooe oooooe
S ooeoeee DR/ oo o
Ve esoooeoee oo oe®

Intel Atom CPU C3858 @2.00GHZ

NIC1 7 NIC2

Socket O Socket 1
Intel Xeon ]=]] Intel Xeon
Platinum 8180 Platinum 8180
x86 Y Y Y X X ) Y YT X X X
oeoeeee® DDR4 XY ' X X I )
Serveroeoe oo ocoooew
Traffic Generator (TG)

SUT server have four internal 10G NIC port:
1. P-1: x553 copper port.
2. P-2: x553 copper port.
3. P-3: x553 fiber port.
4. P-4: x553 fiber port.

TG server run T-Rex software traffic generator and are populated with the following NIC models:

1.4. Physical Testbeds 11



CSIT REPORT, Release rls2001

1. NIC-1: x550-T2 2p10GE Intel.
2. NIC-2: x550-T2 2p10GE Intel.
3. NIC-3: x520-DA2 2p10GE Intel.
4. NIC-4: x520-DA2 2p10GE Intel.

The 2n-dnv testbed is in operation in Intel SH labs.

1.4.6 3-Node Atom Denverton (3n-dnv)

One 3n-dnv testbed is built with: i) one SuperMicro SYS-7049GP-TRT server acting as TG and equipped
with two Intel Xeon Skylake Platinum 8180 processors (38.5 MB Cache, 2.50 GHz, 28 cores), and ii) one
SuperMicro SYS-E300-9A server acting as SUT and equipped with one Intel Atom C3858 processor (12
MB Cache, 2.00 GHz, 12 cores). 3n-dnv physical topology is shown below.

3-Node Atom Denverton (3n-dnv)

System Under Test 1 (SUT1) System Under Test 2 (SUT2)
Server eaa M oo Server eaa M oaa

Intel Atom C3858 @2.00GHz Intel Atom C3858 @2.00GHz

PCle
Gen3 x4

NIC1 NIC2 NIC1 NIC2

il

Socket O Socket 1
Intel Xeon UPI Intel Xeon
Platinum 8180 Platinum 8180
x86 S3S oo 232
Server woe el
Traffic Generator (TG)

SUT1 and SUT2 servers are populated with the following NIC models:
1. NIC-1: x553 2p10GE fiber Intel.
2. NIC-2: x553 2p10GE copper Intel.

TG servers run T-Rex application and are populated with the following NIC models:
1. NIC-1: x710-DA4 4p10GE Intel.

1.4.7 3-Node ARM TaiShan (3n-tsh)

One 3n-tsh testbed is built with: i) one SuperMicro SYS-7049GP-TRT server acting as TG and equipped
with two Intel Xeon Skylake Platinum 8180 processors (38.5 MB Cache, 2.50 GHz, 28 cores), and ii)

12 Chapter 1. Introduction



CSIT REPORT, Release rls2001

one Huawei TaiShan 2280 server acting as SUT and equipped with one hip07-d05 processor (64* ARM
Cortex-A72). 3n-tsh physical topology is shown below.

System Under Test 1 (SUT1)

3-Node ARM TaiShan (3n-tsh)

Server eaa M oo

hip07-d05
64* ARM Cortex-A72

NICL

NIC2

System Under Test 2 (SUT2)

ARM
Server

oo
e ee DDR4
oo oo

hip07-d05
64* ARM Cortex-A72

NIC2

NIC1
PCle

Socket O

Intel Xeon
Platinum 8180

NIC2

Socket 1
Intel Xeon
Platinum 8180

UPI

x86 oo oeoe
eee DDR{f eoee

Server ooe ad ol
Traffic Generator (TG)

SUT1 and SUT2 servers are populated with the following NIC models:

1. NIC-1: connectx4 2p25GE Mellanox.
2. NIC-2: x520 2p10GE Intel.

TG servers run T-Rex application and are populated with the following NIC models:

1. NIC-1: x710-DA4 4p10GE Intel.
2. NIC-2: xxv710-DA2 2p25GE Intel.

1.5 Test Methodology

1.5.1 Terminology

o Frame size: size of an Ethernet Layer-2 frame on the wire, including any VLAN tags (dot1q, dot1ad)

and Ethernet FCS, but excluding Ethernet preamble and inter-frame gap. Measured in Bytes.

o Packet size: same as frame size, both terms used interchangeably.

¢ Inner L2 size: for tunneled L2 frames only, size of an encapsulated Ethernet Layer-2 frame, preceded
with tunnel header, and followed by tunnel trailer. Measured in Bytes.

¢ Inner IP size: for tunneled IP packets only, size of an encapsulated IPv4 or IPvé packet, preceded
with tunnel header, and followed by tunnel trailer. Measured in Bytes.

¢ Device Under Test (DUT): In software networking, “device” denotes a specific piece of software
tasked with packet processing. Such device is surrounded with other software components (such

1.5. Test Methodology

13



CSIT REPORT, Release rls2001

as operating system kernel). It is not possible to run devices without also running the other com-
ponents, and hardware resources are shared between both. For purposes of testing, the whole set
of hardware and software components is called “System Under Test” (SUT). As SUT is the part of
the whole test setup performance of which can be measured with RFC 25442, using SUT instead of
RFC 25443 DUT. Device under test (DUT) can be re-introduced when analyzing test results using
whitebox techniques, but this document sticks to blackbox testing.

¢ System Under Test (SUT): System under test (SUT) is a part of the whole test setup whose perfor-
mance is to be benchmarked. The complete methodology contains other parts, whose performance
is either already established, or not affecting the benchmarking result.

¢ Bi-directional throughput tests: involve packets/frames flowing in both transmit and receive di-
rections over every tested interface of SUT/DUT. Packet flow metrics are measured per direction,
and can be reported as aggregate for both directions (i.e. throughput) and/or separately for each
measured direction (i.e. latency). In most cases bi-directional tests use the same (symmetric) load
in both directions.

¢ Uni-directional throughput tests: involve packets/frames flowing in only one direction, i.e. either
transmit or receive direction, over every tested interface of SUT/DUT. Packet flow metrics are mea-
sured and are reported for measured direction.

e Packet Loss Ratio (PLR): ratio of packets received relative to packets transmitted over the test trial
duration, calculated using formula: PLR = ( pkts_transmitted - pkts_received ) / pkts_transmitted.
For bi-directional throughput tests aggregate PLR is calculated based on the aggregate number of
packets transmitted and received.

e Packet Throughput Rate: maximum packet offered load DUT/SUT forwards within the specified
Packet Loss Ratio (PLR). In many cases the rate depends on the frame size processed by DUT/SUT.
Hence packet throughput rate MUST be quoted with specific frame size as received by DUT/SUT
during the measurement. For bi-directional tests, packet throughput rate should be reported as
aggregate for both directions. Measured in packets-per-second (pps) or frames-per-second (fps),
equivalent metrics.

e Bandwidth Throughput Rate: a secondary metric calculated from packet throughput rate using
formula: bw_rate = pkt_rate - (frame_size + L1_overhead) - 8, where L1_overhead for Ethernet
includes preamble (8 Bytes) and inter-frame gap (12 Bytes). For bi-directional tests, bandwidth
throughput rate should be reported as aggregate for both directions. Expressed in bits-per-second
(bps).

¢ Non Drop Rate (NDR): maximum packet/bandwith throughput rate sustained by DUT/SUT at PLR
equal zero (zero packet loss) specific to tested frame size(s). MUST be quoted with specific packet
size as received by DUT/SUT during the measurement. Packet NDR measured in packets-per-
second (or fps), bandwidth NDR expressed in bits-per-second (bps).

e Partial Drop Rate (PDR): maximum packet/bandwith throughput rate sustained by DUT/SUT at
PLR greater than zero (non-zero packet loss) specific to tested frame size(s). MUST be quoted with
specific packet size as received by DUT/SUT during the measurement. Packet PDR measured in
packets-per-second (or fps), bandwidth PDR expressed in bits-per-second (bps).

¢ Maximum Receive Rate (MRR): packet/bandwidth rate regardless of PLR sustained by DUT/SUT
under specified Maximum Transmit Rate (MTR) packet load offered by traffic generator. MUST be
quoted with both specific packet size and MTR as received by DUT/SUT during the measurement.
Packet MRR measured in packets-per-second (or fps), bandwidth MRR expressed in bits-per-second
(bps).

o Trial: a single measurement step.

o Trial duration: amount of time over which packets are transmitted and received in a single through-
put measurement step.

2 https:/tools.ietf.org/html/rfc2544.html
3 https://tools.ietf.org/html/rfc2544.html

14 Chapter 1. Introduction


https://tools.ietf.org/html/rfc2544.html
https://tools.ietf.org/html/rfc2544.html

CSIT REPORT, Release rls2001

1.5.2 VPP Forwarding Modes

VPP is tested in a number of L2 and IP packet lookup and forwarding modes. Within each mode baseline
and scale tests are executed, the latter with varying number of lookup entries.

L2 Ethernet Switching

VPP is tested in three L2 forwarding modes:

e [2patch: L2 patch, the fastest point-to-point L2 path that loops packets between two interfaces
without any Ethernet frame checks or lookups.

e [2xc: L2 cross-connect, point-to-point L2 path with all Ethernet frame checks, but no MAC learning
and no MAC lookup.

e [2bd: L2 bridge-domain, multipoint-to-multipoint L2 path with all Ethernet frame checks, with MAC
learning (unless static MACs are used) and MAC lookup.

I2bd tests are executed in baseline and scale configurations:

e [2bdbase: low number of L2 flows (254 per direction) is switched by VPP. They drive the content of
MAC FIB size (508 total MAC entries). Both source and destination MAC addresses are incremented
on a packet by packet basis.

e |2bdscale: high number of L2 flows is switched by VPP. Tested MAC FIB sizes include: i) 10k (5k
unique flows per direction), ii) 100k (2x 50k flows) and iii) 1M (2x 500k). Both source and destina-
tion MAC addresses are incremented on a packet by packet basis, ensuring new entries are learn
refreshed and looked up at every packet, making it the worst case scenario.

Ethernet wire encapsulations tested include: untagged, dot1q, dotlad.

IPv4 Routing

IPv4 routing tests are executed in baseline and scale configurations:

e ipdbase: low number of IPv4 flows (253 or 254 per direction) is routed by VPP. They drive the
content of IPv4 FIB size (506 or 508 total /32 prefixes). Destination IPv4 addresses are incremented
on a packet by packet basis.

o ip4scale: high number of IPv4 flows is routed by VPP. Tested IPv4 FIB sizes of /32 prefixes include:
i) 20k (10k unique flows per direction), ii) 200k (2x 100k flows) and iii) 2M (2x 1M). Destination IPv4
addresses are incremented on a packet by packet basis, ensuring new FIB entries are looked up at
every packet, making it the worst case scenario.

IPvé6 Routing

IPvé6 routing tests are executed in baseline and scale configurations:

e ip6base: low number of IPvé flows (253 or 254 per direction) is routed by VPP. They drive the con-
tent of IPv6 FIB size (506 or 508 total /128 prefixes). Destination IPvé addresses are incremented
on a packet by packet basis.

e ip6scale: high number of IPvé flows is routed by VPP. Tested IPvé6 FIB sizes of /128 prefixes include:
i) 20k (10k unique flows per direction), ii) 200k (2x 100k flows) and iii) 2M (2x 1M). Destination IPvé
addresses are incremented on a packet by packet basis, ensuring new FIB entries are looked up at
every packet, making it the worst case scenario.

1.5. Test Methodology 15



CSIT REPORT, Release rls2001

SRvé Routing
SRvé6 routing tests are executed in a number of baseline configurations, in each case SR policy and steering
policy are configured for one direction and one (or two) SR behaviours (functions) in the other directions:
e srvéencisid: One SID (no SRH present), one SR function - End.
e srvéenc2sids: Two SIDs (SRH present), two SR functions - End and End.DXé6.
e srvéenc2sids-nodecaps: Two SIDs (SRH present) without decapsulation, one SR function - End.
e srvéproxy-dyn: Dynamic SRvé proxy, one SR function - End.AD.
o srvéproxy-masq: Masquerading SRvé proxy, one SR function - End.AM.
o srvéproxy-stat: Static SRvé proxy, one SR function - End.AS.

In all listed cases low number of IPv6 flows (253 per direction) is routed by VPP.

1.5.3 Tunnel Encapsulations

Tunnel encapsulations testing is grouped based on the type of outer header: IPv4 or IPvé.

IPv4 Tunnels

VPP is tested in the following IPv4 tunnel baseline configurations:
ip4vxlan-12bdbase: VXLAN over IPv4 tunnels with L2 bridge-domain MAC switching.

ip4vxlan-12xcbase: VXLAN over IPv4 tunnels with L2 cross-connect.

ip4lispip4-ip4base: LISP over IPv4 tunnels with IPv4 routing.

ip4lispip6-ip6base: LISP over IPv4 tunnels with IPvé routing.

In all cases listed above low number of MAC, IPv4, IPvé flows (254 or 253 per direction) is switched or
routed by VPP.

In addition selected IPv4 tunnels are tested at scale:

e dotlqg-ip4vxlanscale-12bd: VXLAN over IPv4 tunnels with L2 bridge- domain MAC switching, with
scaled up dotlg VLANSs (10, 100, 1k), mapped to scaled up L2 bridge-domains (10, 100, 1k), that
are in turn mapped to (10, 100, 1k) VXLAN tunnels. 64.5k flows are transmitted per direction.

IPv6 Tunnels

VPP is tested in the following IPv6 tunnel baseline configurations:
o pélispip4-ip4base: LISP over IPv4 tunnels with IPv4 routing.
o ipblispip6-ip6base: LISP over IPv4 tunnels with IPvé routing.

In all cases listed above low number of IPv4, IPvé flows (253 per direction) is routed by VPP.

1.5.4 VPP Features

VPP is tested in a number of data plane feature configurations across different forwarding modes. Fol-
lowing sections list features tested.

16 Chapter 1. Introduction



CSIT REPORT, Release rls2001

ACL Security-Groups
Both stateless and stateful access control lists (ACL), also known as security-groups, are supported by
VPP.
Following ACL configurations are tested for MAC switching with L2 bridge-domains:
o [2bdbasemaclrn-iacl{E}sl-{F}flows: Input stateless ACL, with {E} entries and {F} flows.
e [2bdbasemacirn-oacl{E}sl-{F}flows: Output stateless ACL, with {E} entries and {F} flows.
e [2bdbasemaclirn-iacl{E}sf-{F}flows: Input stateful ACL, with {E} entries and {F} flows.
e |2bdbasemacirn-oacl{E}sf-{F}flows: Output stateful ACL, with {E} entries and {F} flows.
Following ACL configurations are tested with IPv4 routing:
o ipdbase-iacl{E}sl-{F}flows: Input stateless ACL, with {E} entries and {F} flows.
o ip4base-oacl{E}sl-{F}flows: Output stateless ACL, with {E} entries and {F} flows.
e ip4base-iacl{E}sf-{F}flows: Input stateful ACL, with {E} entries and {F} flows.
o ipdbase-oacl{E}sf-{F}flows: Output stateful ACL, with {E} entries and {F} flows.
ACL tests are executed with the following combinations of ACL entries and number of flows:
e ACL entry definitions
- flow non-matching deny entry: (src-ip4, dst-ip4, src-port, dst-port).
- flow matching permit ACL entry: (src-ip4, dst-ip4).
e {E} - number of non-matching deny ACL entries, {E} = [1, 10, 50].

e {F} - number of UDP flows with different tuple (src-ip4, dst-ip4, src-port, dst-port), {F} = [100, 10k,
100Kk].

o All {E}x{F} combinations are tested per ACL type, total of 9.

ACL MAC-IP

MAC-IP binding ACLs are tested for MAC switching with L2 bridge-domains:
e [2bdbasemaclrn-macip-iacl{E}sl-{F}flows: Input stateless ACL, with {E} entries and {F} flows.
MAC-IP ACL tests are executed with the following combinations of ACL entries and number of flows:
e ACL entry definitions
- flow non-matching deny entry: (dst-ip4, dst-mac, bit-mask)
- flow matching permit ACL entry: (dst-ip4, dst-mac, bit-mask)
e {E} - number of non-matching deny ACL entries, {E} = [1, 10, 50]
¢ {F} - number of UDP flows with different tuple (dst-ip4, dst-mac), {F} = [100, 10k, 100k]
o All {E}x{F} combinations are tested per ACL type, total of 9.

NAT44

NAT44 is tested in baseline and scale configurations with IPv4 routing:
o ip4base-nat44: baseline test with single NAT entry (addr, port), single UDP flow.
e ip4base-udpsrcscale{U}-nat44: baseline test with {U} NAT entries (addr, {U}ports), {U}=15.

o ip4scale{R}-udpsrcscale{U}-nat44: scale tests with {R}*{U} NAT entries ({Rladdr, {U}ports), {R}=[100,
1k, 2k, 4k], {U}=15.

1.5. Test Methodology 17



CSIT REPORT, Release rls2001

1.5.5 Data Plane Throughput

Data Plane Throughput Tests

Network data plane throughput is measured using multiple test methods in order to obtain representative
and repeatable results across the large set of performance test cases implemented and executed within
CSIT.

Following throughput test methods are used:
e MLRsearch - Multiple Loss Ratio search
e MRR - Maximum Receive Rate
o PLRsearch - Probabilistic Loss Ratio search

Description of each test method is followed by generic test properties shared by all methods.

MLRsearch Tests
Description

Multiple Loss Ratio search (MLRsearch) tests discover multiple packet throughput rates in a single search,
reducing the overall test execution time compared to a binary search. Each rate is associated with a
distinct Packet Loss Ratio (PLR) criteria. In FD.io CSIT two throughput rates are discovered: Non-Drop
Rate (NDR, with zero packet loss, PLR=0) and Partial Drop Rate (PDR, with PLR<0.5%). MLRsearch is
compliant with RFC 25444,

Usage

MLRsearch tests are run to discover NDR and PDR rates for each VPP and DPDK release covered by
CSIT report. Results for small frame sizes (64b/78B, IMIX) are presented in packet throughput graphs
(Box-and-Whisker Plots) with NDR and PDR rates plotted against the test cases covering popular VPP
packet paths.

Each test is executed at least 10 times to verify measurements repeatability and results are compared
between releases and test environments. NDR and PDR packet and bandwidth throughput results for all
frame sizes and for all tests are presented in detailed results tables.

Details

See MLRsearch Tests (page 20) section for more detail. MLRsearch is being standardized in IETF in draft-
vpolak-mkonstan-mlrsearch.

MRR Tests
Description

Maximum Receive Rate (MRR) tests are complementary to MLRsearch tests, as they provide a maximum
“raw” throughput benchmark for development and testing community.

MRR tests measure the packet forwarding rate under the maximum load offered by traffic generator
(dependent on link type and NIC model) over a set trial duration, regardless of packet loss. Maximum
load for specified Ethernet frame size is set to the bi-directional link rate.

4 https:/tools.ietf.org/html/rfc2544.html
5 https:/tools.ietf.org/html/draft-vpolak-mkonstan-bmwg-mirsearch

18 Chapter 1. Introduction


https://tools.ietf.org/html/rfc2544.html
https://tools.ietf.org/html/draft-vpolak-mkonstan-bmwg-mlrsearch
https://tools.ietf.org/html/draft-vpolak-mkonstan-bmwg-mlrsearch

CSIT REPORT, Release rls2001

Usage

MRR tests are much faster than MLRsearch as they rely on a single trial or a small set of trials with very
short duration. It is this property that makes them suitable for continuous execution in daily performance
trending jobs enabling detection of performance anomalies (regressions, progressions) resulting from data
plane code changes.

MRR tests are also used for VPP per patch performance jobs verifying patch performance vs. parent. CSIT
reports include MRR throughput comparisons between releases and test environments. Small frame sizes
only (64b/78B, IMIX).

Details

See MRR Throughput (page 20) section for more detail about MRR tests configuration.

FD.io CSIT performance dashboard includes complete description of daily performance trending tests®
and VPP per patch tests’.

PLRsearch Tests
Description

Probabilistic Loss Ratio search (PLRsearch) tests discovers a packet throughput rate associated with con-
figured Packet Loss Ratio (PLR) criteria for tests run over an extended period of time a.k.a. soak testing.
PLRsearch assumes that system under test is probabilistic in nature, and not deterministic.

Usage

PLRsearch are run to discover a sustained throughput for PLR=107-7 (close to NDR) for VPP release
covered by CSIT report. Results for small frame sizes (64b/78B) are presented in packet throughput
graphs (Box Plots) for a small subset of baseline tests.

Each soak test lasts 2hrs and is executed at least twice. Results are compared against NDR and PDR rates
discovered with MLRsearch.

Details

See PLRsearch (page 21) methodology section for more detail. PLRsearch is being standardized in IETF in
draft-vpolak-bmwg-plrsearch®.

Generic Test Properties

All data plane throughput test methodologies share following generic properties:
e Tested L2 frame sizes (untagged Ethernet):
- IPv4 payload: 64B, IMIX (28x64B, 16x570B, 4x1518B), 1518B, 9000B.
- IPvé payload: 78B, IMIX (28x78B, 16x570B, 4x1518B), 1518B, 9000B.

- All quoted sizes include frame CRC, but exclude per frame transmission overhead of 20B
(preamble, inter frame gap).

6 https:/docs.fd.io/csit/master/trending/methodology/performance_tests.html
7 https://docs.fd.io/csit/master/trending/methodology/perpatch_performance_tests.html
8 https:/tools.ietf.org/html/draft-vpolak-bmwg-plrsearch

1.5. Test Methodology 19


https://docs.fd.io/csit/master/trending/methodology/performance_tests.html
https://docs.fd.io/csit/master/trending/methodology/perpatch_performance_tests.html
https://tools.ietf.org/html/draft-vpolak-bmwg-plrsearch

CSIT REPORT, Release rls2001

o Offered packet load is always bi-directional and symmetric.

o All measured and reported packet and bandwidth rates are aggregate bi-directional rates reported
from external Traffic Generator perspective.

MLRsearch Tests

Overview

Multiple Loss Rate search (MLRsearch) tests use new search algorithm implemented in FD.io CSIT project.
MLRsearch discovers multiple packet throughput rates in a single search, with each rate associated with
a different Packet Loss Ratio (PLR) criteria.

Two throughput measurements used in FD.io CSIT are Non-Drop Rate (NDR, with zero packet loss,
PLR=0) and Partial Drop Rate (PDR, with packet loss rate not greater than the configured non-zero PLR).

MLRsearch discovers NDR and PDR in a single pass reducing required time duration compared to separate
binary searches for NDR and PDR. Overall search time is reduced even further by relying on shorter trial
durations of intermediate steps, with only the final measurements conducted at the specified final trial
duration. This results in the shorter overall execution time when compared to standard NDR/PDR binary
search, while guaranteeing similar results.

If needed, MLRsearch can be easily adopted to discover more throughput rates with different pre-defined
PLRs.

Note: All throughput rates are always bi-directional aggregates of two equal (symmetric) uni-directional
packet rates received and reported by an external traffic generator.

Search Implementation

Detailed description of the MLRsearch algorithm is included in the IETF draft draft-vpolak-mkonstan-
mirsearch? that is in the process of being standardized in the IETF Benchmarking Methodology Working
Group (BMWG).

MLRsearch is also available as a PyPI (Python Package Index) library°.

Implementation Deviations

FD.io CSIT implementation of MLRsearch so far is fully based on the -01 version of the draft-vpolak-
mkonstan-mlirsearch-0111,

MRR Throughput

Maximum Receive Rate (MRR) tests are complementary to MLRsearch tests, as they provide a maximum
“raw” throughput benchmark for development and testing community. MRR tests measure the packet
forwarding rate under the maximum load offered by traffic generator over a set trial duration, regardless
of packet loss.

MRR tests are currently used for following test jobs:
e Report performance comparison: 64B, IMIX for vhost, memif.

o Daily performance trending: 64B, IMIX for vhost, memif.

? https://tools.ietf.org/html/draft-vpolak-mkonstan-bmwg-mirsearch
10 https:/pypi.org/project/MLRsearch/
11 https://tools.ietf.org/html/draft-vpolak-mkonstan-bmwg-mirsearch-01

20 Chapter 1. Introduction


https://tools.ietf.org/html/draft-vpolak-mkonstan-bmwg-mlrsearch
https://tools.ietf.org/html/draft-vpolak-mkonstan-bmwg-mlrsearch
https://pypi.org/project/MLRsearch/
https://tools.ietf.org/html/draft-vpolak-mkonstan-bmwg-mlrsearch-01
https://tools.ietf.org/html/draft-vpolak-mkonstan-bmwg-mlrsearch-01

CSIT REPORT, Release rls2001

e Per-patch performance verification: 64B.
o PLRsearch soaking tests: 64B.

Maximum offered load for specific L2 Ethernet frame size is set to either the maximum bi-directional link
rate or tested NIC model capacity, as follows:

e For 10GE NICs the maximum packet rate load is 2x14.88 Mpps for 64B, a 10GE bi-directional link
rate.

e For 25GE NICs the maximum packet rate load is 2x18.75 Mpps for 64B, a 25GE bi-directional link
sub-rate limited by 25GE NIC used on TRex TG, XXV710.

e For 40GE NICs the maximum packet rate load is 2x18.75 Mpps for 64B, a 40GE bi-directional link
sub-rate limited by 40GE NIC used on TRex TG,XL710. Packet rate for other tested frame sizes is
limited by PCleGen3 x8 bandwidth limitation of ~50Gbps.

MRR test code implements multiple bursts of offered packet load and has two configurable burst parame-
ters: individual trial duration and number of trials in a single burst. This enables more precise performance
trending by providing more results data for analysis.

Burst parameter settings vary between different tests using MRR:
e MRR individual trial duration:
- Report performance comparison: 1 sec.
- Daily performance trending: 1 sec.
- Per-patch performance verification: 10 sec.
- PLRsearch soaking tests: 5.2 sec.
e Number of MRR trials per burst:
- Report performance comparison: 10.
- Daily performance trending: 10.
- Per-patch performance verification: 5.

- PLRsearch soaking tests: 1.

PLRsearch

Motivation for PLRsearch

Network providers are interested in throughput a system can sustain.

RFC 254412 assumes loss ratio is given by a deterministic function of offered load. But NFV software
systems are not deterministic enough. This makes deterministic algorithms (such as binary search!® per
RFC 2544 and MLRsearch with single trial) to return results, which when repeated show relatively high
standard deviation, thus making it harder to tell what “the throughput” actually is.

We need another algorithm, which takes this indeterminism into account.

Generic Algorithm

Detailed description of the PLRsearch algorithm is included in the IETF draft draft-vpolak-bmwg-
plrsearch-021 that is in the process of being standardized in the IETF Benchmarking Methodology Work-
ing Group (BMWG).

12 https://tools.ietf.org/html/rfc2544
13 https:/en.wikipedia.org/wiki/Binary_search_algorithm
14 https://tools.ietf.org/html/draft-vpolak-bmwg-plrsearch-02

1.5. Test Methodology 21


https://tools.ietf.org/html/rfc2544
https://en.wikipedia.org/wiki/Binary_search_algorithm
https://tools.ietf.org/html/draft-vpolak-bmwg-plrsearch-02
https://tools.ietf.org/html/draft-vpolak-bmwg-plrsearch-02

CSIT REPORT, Release rls2001

Terms

The rest of this page assumes the reader is familiar with the following terms defined in the IETF draft:
o Trial Order Independent System
e Duration Independent System
o Target Loss Ratio
e Critical Load
o Offered Load regions

- Zero Loss Region
- Non-Deterministic Region
- Guaranteed Loss Region
e Fitting Function
- Stretch Function
- Erf Function
e Bayesian Inference
- Prior distribution
- Posterior Distribution
e Numeric Integration
- Monte Carlo

- Importance Sampling

FD.io CSIT Implementation Specifics

The search receives min_rate and max_rate values, to avoid measurements at offered loads not sup-
poreted by the traffic generator.

The implemented tests cases use bidirectional traffic. The algorithm stores each rate as bidirectional
rate (internally, the algorithm is agnostic to flows and directions, it only cares about aggregate counts of
packets sent and packets lost), but debug output from traffic generator lists unidirectional values.

In a sample implemenation in FD.io CSIT project, there is roughly 0.5 second delay between trials due to
restrictons imposed by packet traffic generator in use (T-Rex).

As measurements results come in, posterior distribution computation takes more time (per sample), al-
though there is a considerable constant part (mostly for inverting the fitting functions).

Also, the integrator needs a fair amount of samples to reach the region the posterior distribution is con-
centrated at.

And of course, the speed of the integrator depends on computing power of the CPU the algorithm is able
to use.

All those timing related effects are addressed by arithmetically increasing trial durations with configurable
coefficients (currently 5.1 seconds for the first trial, each subsequent trial being 0.1 second longer).

In order to avoid them, the current implementation tracks natural logarithm (instead of the original quan-
tity) for any quantity which is never negative. Logarithm of zero is minus infinity (not supported by
Python), so special value “None” is used instead. Specific functions for frequent operations (such as
“logarithm of sum of exponentials”) are defined to handle None correctly.

22 Chapter 1. Introduction



CSIT REPORT, Release rls2001

Current implementation uses two fitting functions. In general, their estimates for critical rate differ, which
adds a simple source of systematic error, on top of randomness error reported by integrator. Otherwise
the reported stdev of critical rate estimate is unrealistically low.

Both functions are not only increasing, but also convex (meaning the rate of increase is also increasing).

Both fitting functions have several mathematically equivalent formulas, each can lead to an overflow or
underflow in different sub-terms. Overflows can be eliminated by using different exact formulas for dif-
ferent argument ranges. Underflows can be avoided by using approximate formulas in affected argument
ranges, such ranges have their own formulas to compute. At the end, both fitting function implementa-
tions contain multiple “if” branches, discontinuities are a possibility at range boundaries.

The numeric integrator expects all the parameters to be distributed (independently and) uniformly on an
interval (-1, 1).

As both “mrr” and “spread” parameters are positive and not not dimensionless, a transformation is needed.
Dimentionality is inherited from max_rate value.

The “mrr” parameter follows a Lomax distribution®® with alpha equal to one, but shifted so that mrr is
always greater than 1 packet per second.

The “stretch” parameter is generated simply as the “mrr” value raised to a random power between zero
and one; thus it follows a reciprocal distribution®.

After few measurements, the posterior distribution of fitting function arguments gets quite concentrated
into a small area. The integrator is using Monte Carlo!” with importance sampling’® where the biased
distribution is bivariate Gaussian'? distribution, with deliberately larger variance. If the generated sample
falls outside (-1, 1) interval, another sample is generated.

The center and the covariance matrix for the biased distribution is based on the first and second moments
of samples seen so far (within the computation). The center is used directly, covariance matrix is scaled
up by a heurictic constant (8.0 by default). The following additional features are applied designed to avoid
hyper-focused distributions.

Each computation starts with the biased distribution inherited from the previous computation (zero point
and unit covariance matrix is used in the first computation), but the overal weight of the data is set to
the weight of the first sample of the computation. Also, the center is set to the first sample point. When
additional samples come, their weight (including the importance correction) is compared to sum of the
weights of data seen so far (within the iteration). If the new sample is more than one e-fold more impactful,
both weight values (for data so far and for the new sample) are set to (geometric) average of the two
weights.

This combination showed the best behavior, as the integrator usually follows two phases. First phase
(where inherited biased distribution or single big sample are dominating) is mainly important for locating
the new area the posterior distribution is concentrated at. The second phase (dominated by whole sample
population) is actually relevant for the critical rate estimation.

First two measurements are hardcoded to happen at the middle of rate interval and at max_rate. Next
two measurements follow MRR-like logic, offered load is decreased so that it would reach target loss ratio
if offered load decrease lead to equal decrease of loss rate.

The rest of measurements start directly in between erf and stretch estimate average. There is one
workaround implemented, aimed at reducing the number of consequent zero loss measurements (per
fitting function). The workaround first stores every measurement result which loss ratio was the targed
loss ratio or higher. Sorted list (called lossy loads) of such results is maintained.

When a sequence of one or more zero loss measurement results is encountered, a smallest of lossy loads
is drained from the list. If the estimate average is smaller than the drained value, a weighted average of
this estimate and the drained value is used as the next offered load. The weight of the estimate decreases
exponentially with the length of consecutive zero loss results.

15 https:/en.wikipedia.org/wiki/Lomax_distribution

16 https://en.wikipedia.org/wiki/Reciprocal_distribution

17 https://en.wikipedia.org/wiki/Monte_Carlo_integration

18 https:/en.wikipedia.org/wiki/Importance_sampling

19 https://en.wikipedia.org/wiki/Multivariate_normal_distribution

1.5. Test Methodology 23


https://en.wikipedia.org/wiki/Lomax_distribution
https://en.wikipedia.org/wiki/Reciprocal_distribution
https://en.wikipedia.org/wiki/Monte_Carlo_integration
https://en.wikipedia.org/wiki/Importance_sampling
https://en.wikipedia.org/wiki/Multivariate_normal_distribution

CSIT REPORT, Release rls2001

This behavior helps the algorithm with convergence speed, as it does not need so many zero loss result to
get near critical region. Using the smallest (not drained yet) of lossy loads makes it sure the new offered
load is unlikely to result in big loss region. Draining even if the estimate is large enough helps to discard
early measurements when loss hapened at too low offered load. Current implementation adds 4 copies
of lossy loads and drains 3 of them, which leads to fairly stable behavior even for somewhat inconsistent
SUTs.

As high loss count measurements add many bits of information, they need a large amount of small loss
count measurements to balance them, making the algorithm converge quite slowly. Typically, this happens
when few initial measurements suggest spread way bigger then later measurements. The workaround in
offered load selection helps, but more intelligent workarounds could get faster convergence still.

Some systems evidently do not follow the assumption of repeated measurements having the same aver-
age loss rate (when the offered load is the same). The idea of estimating the trend is not implemented at
all, as the observed trends have varied characteristics.

Probably, using a more realistic fitting functions will give better estimates than trend analysis.

Bottom Line

The notion of Throughput is easy to grasp, but it is harder to measure with any accuracy for non-
deterministic systems.

Even though the notion of critical rate is harder to grasp than the notion of throughput, it is easier to
measure using probabilistic methods.

In testing, the difference between througput measurements and critical rate measurements is usually
small, see soak vs ndr comparison.

In pactice, rules of thumb such as “send at max 95% of purported throughput” are common. The correct
benchmarking analysis should ask “Which notion is 95% of throughput an approximation to?” before
attempting to answer “Is 95% of critical rate safe enough?”.

Algorithmic Analysis

While the estimation computation is based on hard probability science; the offered load selection part
of PLRsearch logic is pure heuristics, motivated by what would a human do based on measurement and
computation results.

The quality of any heuristic is not affected by soundness of its motivation, just by its ability to achieve the
intended goals. In case of offered load selection, the goal is to help the search to converge to the long
duration estimates sooner.

But even those long duration estimates could still be of poor quality. Even though the estimate compu-
tation is Bayesian (so it is the best it could be within the applied assumptions), it can still of poor quality
when compared to what a human would estimate.

One possible source of poor quality is the randomnes inherently present in Monte Carlo numeric integra-
tion, but that can be supressed by tweaking the time related input parameters.

The most likely source of poor quality then are the assumptions. Most importantly, the number and the
shape of fitting functions; but also others, such as trial order independence and duration independence.

The result can have poor quality in basically two ways. One way is related to location. Both upper and
lower bounds can be overestimates or underestimates, meaning the entire estimated interval between
lower bound and upper bound lays above or below (respectively) of human-estimated interval. The other
way is related to the estimation interval width. The interval can be too wide or too narrow, compared to
human estimation.

An estimate from a particular fitting function can be classified as an overestimate (or underestimate) just
by looking at time evolution (without human examining measurement results). Overestimates decrease
by time, underestimates increase by time (assuming the system performance stays constant).

24 Chapter 1. Introduction



CSIT REPORT, Release rls2001

Quality of the width of the estimation interval needs human evaluation, and is unrelated to both rate of
narrowing (both good and bad estimate intervals get narrower at approximately the same relative rate)
and relatative width (depends heavily on the system being tested).

The following pictures show the upper (red) and lower (blue) bound, as well as average of Stretch (pink)
and Erf (light green) estimate, and offered load chosen (grey), as computed by PLRsearch, after each trial
measurement within the 30 minute duration of a test run.

Both graphs are focusing on later estimates. Estimates computed from few initial measurements are wildly
off the y-axis range shown.

The following analysis will rely on frequency of zero loss measurements and magnitude of loss ratio if
nonzero.

The offered load selection strategy used implies zero loss measurements can be gleamed from the graph
by looking at offered load points. When the points move up farther from lower estimate, it means the
previous measurement had zero loss. After non-zero loss, the offered load starts again right between (the
previous values of) the estimate curves.

The very big loss ratio results are visible as noticeable jumps of both estimates downwards. Medium and
small loss ratios are much harder to distinguish just by looking at the estimate curves, the analysis is based
on raw loss ratio measurement results.

The following descriptions should explain why the graphs seem to signal low quality estimate at first sight,
but a more detailed look reveals the quality is good (considering the measurement results).

L2 patch

Both fitting functions give similar estimates, the graph shows “stochasticity” of measurements (estimates
increase and decrease within small time regions), and an overall trend of decreasing estimates.

On the first look, the final interval looks fairly narrow, especially compared to the region the estimates
have travelled during the search. But the look at the frequency of zero loss results shows this is not a case
of overestimation. Measurements at around the same offered load have higher probability of zero loss
earlier (when performed farther from upper bound), but smaller probability later (when performed closer
to upper bound). That means it is the performance of the system under test that decreases (slightly) over
time.

With that in mind, the apparent narrowness of the interval is not a sign of low quality, just a consequence
of PLRsearch assuming the performance stays constant.

27,9109 |+ Stretch average Erf average = Offered load + Upper bound + Lower bound
B - : :
27,0107 2 £y L2 patch bidirectional throughput estimate
2791055 - as a function of time since search start
27,9103 3 ‘."%a
= S
27,9101 -
. %o 3 5'Mt0e,, 0,
®50e®, E'EDD:
27,9099 - Sitttetesessese, L,
27,9097 THTeetteesseeneni ittt
27,9095 Time [s]
0 200 400 600 800 1000 1200 1400 1600 1800

1.5. Test Methodology 25



CSIT REPORT, Release rls2001

Vhost

This test case shows what looks like a quite broad estimation interval, compared to other test cases with
similarly looking zero loss frequencies. Notable features are infrequent high-loss measurement results
causing big drops of estimates, and lack of long-term convergence.

Any convergence in medium-sized intervals (during zero loss results) is reverted by the big loss results, as
they happen quite far from the critical load estimates, and the two fitting functions extrapolate differently.

In other words, human only seeing estimates from one fitting function would expect narrower end inter-
val, but human seeing the measured loss ratios agrees that the interval should be wider than that.

6,45
Stretch average Erf average = Offered load « Upper bound » Lower bound

= Vhost bidirectional throughput estimate
ea |5 Tl - as.a function of time since search start

] L]
]

[Mpps]

6,35

put
s,
£

Through

6,3 0 0% 0p® ese® et e e

Time [s]
6,25

0 200 400 600 800 1000 1200 1400 1600 1800

Summary

The two graphs show the behavior of PLRsearch algorithm applied to soaking test when some of
PLRsearch assumptions do not hold:

e L2 patch measurement results violate the assumption of performance not changing over time.
¢ Vhost measurement results violate the assumption of Poisson distribution matching the loss counts.

The reported upper and lower bounds can have distance larger or smaller than a first look by a human
would expect, but a more closer look reveals the quality is good, considering the circumstances.

The usefullness of the critical load estimate is of questionable value when the assumptions are violated.

Some improvements can be made via more specific workarounds, for example long term limit of L2 patch
performance could be estmated by some heuristic.

Other improvements can be achieved only by asking users whether loss patterns matter. Is it better to
have single digit losses distributed fairly evenly over time (as Poisson distribution would suggest), or is
it better to have short periods of medium losses mixed with long periods of zero losses (as happens in
Vhost test) with the same overall loss ratio?

26 Chapter 1. Introduction



CSIT REPORT, Release rls2001

1.5.6 Packet Latency

TRex Traffic Generator (TG) is used for measuring latency across 2-Node and 3-Node SUT server topolo-
gies. TRex integrates A High Dynamic Range Histogram (HDRH)%° code providing per packet latency
distribution for latency streams sent in parallel to the main load packet streams. Packet latency is mea-
sured using following methodology:

o Latency tests are performed at following packet load levels:
- No-Load: latency streams only.

Low-Load: at 10% PDR.

Mid-Load: at 50% PDR.

High-Load: at 90% PDR.

NDR-Load: at 100% NDR.

PDR-Load: at 100% PDR.

e Latency is measured for all tested packet sizes except IMIX due to TG restriction.

e TG sends dedicated latency streams, one per direction, each at the rate of 9 kpps at the prescribed
packet size; these are sent in addition to the main load streams.

e TG reports Min/Avg/Max and HDRH latency values distribution per stream direction, hence two
sets of latency values are reported per test case.

e Reported latency values are aggregate across tested topology.
e +/- 1 usec is the measurement accuracy advertised by TRex TG for the setup used.

o TG setup introduces an always-on Tx/Rx interface latency of about 2 * 2 usec per direction induced
by TRex SW writing and reading packet timestamps on CPU cores.

1.5.7 Multi-Core Speedup

All performance tests are executed with single processor core and with multiple cores scenarios.

Intel Hyper-Threading (HT)

Intel Xeon processors used in FD.io CSIT can operate either in HT Disabled mode (single logical core per
each physical core) or in HT Enabled mode (two logical cores per each physical core). HT setting is applied
in BIOS and requires server SUT reload for it to take effect, making it impractical for continuous changes
of HT mode of operation.

CSIT-2001 performance tests are executed with server SUTs’ Intel XEON processors configured with
Intel Hyper-Threading Disabled for all Xeon Haswell testbeds (3n-hsw) and with Intel Hyper-Threading
Enabled for all Xeon Skylake testbeds.

More information about physical testbeds is provided in Physical Testbeds (page 4).

Multi-core Tests
CSIT-2001 multi-core tests are executed in the following VPP worker thread and physical core configu-
rations:

1. Intel Xeon Haswell testbeds (3n-hsw) with Intel HT disabled (1 logical CPU core per each physical
core):

1. 1tlc - 1 VPP worker thread on 1 physical core.

20 http:/hdrhistogram.org/

1.5. Test Methodology 27


http://hdrhistogram.org/

CSIT REPORT, Release rls2001

2. 2t2c - 2 VPP worker threads on 2 physical cores.
3. 4t4c - 4 VPP worker threads on 4 physical cores.

1. Intel Xeon Skylake testbeds (2n-skx, 3n-skx) with Intel HT enabled (2 logical CPU cores per each
physical core):

1. 2tlc - 2 VPP worker threads on 1 physical core.
2. 4t2c - 4 VPP worker threads on 2 physical cores.
3. 8t4c - 8 VPP worker threads on 4 physical cores.

VPP worker threads are the data plane threads running on isolated logical cores. With Intel HT enabled
VPP workers are placed as sibling threads on each used physical core. VPP control threads (main, stats)
are running on a separate non-isolated core together with other Linux processes.

In all CSIT tests care is taken to ensure that each VPP worker handles the same amount of received packet
load and does the same amount of packet processing work. This is achieved by evenly distributing per
interface type (e.g. physical, virtual) receive queues over VPP workers using default VPP round-robin
mapping and by loading these queues with the same amount of packet flows.

If number of VPP workers is higher than number of physical or virtual interfaces, multiple receive queues
are configured on each interface. NIC Receive Side Scaling (RSS) for physical interfaces and multi-queue
for virtual interfaces are used for this purpose.

Section Speedup Multi-Core (page 124) includes a set of graphs illustrating packet throughout speedup
when running VPP worker threads on multiple cores. Note that in quite a few test cases running VPP
workers on 2 or 4 physical cores hits the I/0O bandwidth or packets-per-second limit of tested NIC.

1.5.8 HTTP/TCP with WRK

WRK HTTP benchmarking tool?! is used for TCP/IP and HTTP tests of VPP Host Stack and built-in static
HTTP server. WRK has been chosen as it is capable of generating significant TCP/IP and HTTP loads by
scaling number of threads across multi-core processors.

This in turn enables high scale benchmarking of the VPP Host Stack TCP/IP and HTTP service including
HTTP TCP/IP Connections-Per-Second (CPS) and HTTP Requests-Per-Second.

The initial tests are designed as follows:
e HTTP and TCP/IP Connections-Per-Second (CPS)

WRK configured to use 8 threads across 8 cores, 1 thread per core.

Maximum of 50 concurrent connections across all WRK threads.

Timeout for server responses set to 5 seconds.

Test duration is 30 seconds.

Expected HTTP test sequence:
* Single HTTP GET Request sent per open connection.
* Connection close after valid HTTP reply.
* Resulting flow sequence - 8 packets: >Syn, <Syn-Ack, >Ack, >Req, <Rep, >Fin, <Fin, >Ack.
e HTTP Requests-Per-Second
- WRK configured to use 8 threads across 8 cores, 1 thread per core.
- Maximum of 50 concurrent connections across all WRK threads.
- Timeout for server responses set to 5 seconds.

- Test duration is 30 seconds.

21 https:/github.com/wg/wrk

28 Chapter 1. Introduction


https://github.com/wg/wrk

CSIT REPORT, Release rls2001

- Expected HTTP test sequence:
* Multiple HTTP GET Requests sent in sequence per open connection.
* Connection close after set test duration time.

* Resulting flow sequence: >Syn, <Syn-Ack, >Ack, >Req[1], <Rep[1], .., >Req[n], <Rep[n],
>Fin, <Fin, >Ack.

1.5.9 Hoststack Throughput Testing over TCP/IP with iperf3

iperf3 bandwidth measurement tool?? is used for measuring the maximum attainable bandwidth of the
VPP Host Stack connection across two instances of VPP running on separate DUT nodes. iperf3 is a
popular open source tool for active measurements of the maximum achievable bandwidth on IP networks.

Because iperf3 utilizes the POSIX socket interface APIs, the current test configuration utilizes the
LD_PRELOAD mechanism in the linux kernel to connect iperf3 to the VPP Host Stack using the VPP
Communications Library (VCL) LD_PRELOAD library (libvcl_|ldpreload.so).

In the future, a forked version of iperf3 which has been modified to directly use the VCL application
APIs may be added to determine the difference in performance of ‘VCL Native' applications .vs. utilizing
LD_PRELOAD which inherently has more overhead and other limitations.

The test configuration is as follows:
DUT1 Network DUT2
[ iperf3-client -> VPP1 ]=======[ VPP2 -> iperf3-server]
where,
1. iperf3 server attaches to VPP2 and LISTENs on VPP2:TCP port 5201.

2. iperf3 client attaches to VPP1 and opens one or more stream connections to VPP2:TCP
port 5201.

3. iperf3 client transmits a uni-directional stream as fast as the VPP Host Stack allows to
the iperf3 server for the test duration.

4. At the end of the test the iperf3 client emits the goodput measurements for all streams
and the sum of all streams.

Test cases include 1 and 10 Streams with a 20 second test duration with the VPP Host Stack
configured to utilize the Cubic TCP congestion algorithm.

Note: iperf3 is single threaded, so it is expected that the 10 stream test does not show any
performance improvement due to multi-thread/multi-core execution.

1.5.10 Hoststack Throughput Testing over QUIC/UDP/IP with vpp_echo

vpp_echo performance testing tool?® is a bespoke performance test application which utilizes the ‘na-
tive HostStack APIs' to verify performance and correct handling of connection/stream events with uni-
directional and bi-directional streams of data.

Because iperf3 does not support the QUIC transport protocol, vpp_echo is used for measuring the maxi-
mum attainable bandwidth of the VPP Host Stack connection utilzing the QUIC transport protocol across
two instances of VPP running on separate DUT nodes. The QUIC transport protocol supports multiple
streams per connection and test cases utilize different combinations of QUIC connections and number
of streams per connection.

The test configuration is as follows:

DUT1 Network DUT2

22 https://github.com/esnet/iperf
23 https://wiki.fd.io/view/VPP/HostStack#External_Echo_Server.2FClient_.28vpp_echo.29

1.5. Test Methodology 29


https://github.com/esnet/iperf
https://wiki.fd.io/view/VPP/HostStack#External_Echo_Server.2FClient_.28vpp_echo.29

CSIT REPORT, Release rls2001

[ vpp_echo-client -> VPP1 ]=======[ VPP2 -> vpp_echo-server] N-streams/connection
where,
1. vpp_echo server attaches to VPP2 and LISTENs on VPP2:TCP port 1234.

2. vpp_echo client creates one or more connections to VPP1 and opens one or more stream
per connection to VPP2:TCP port 1234.

3. vpp_echo client transmits a uni-directional stream as fast as the VPP Host Stack allows
to the vpp_echo server for the test duration.

4. At the end of the test the vpp_echo client emits the goodput measurements for all
streams and the sum of all streams.

Test casesinclude 1. 1 QUIC Connection with 1 Stream 2. 1 QUIC connection with 10 Streams
3. 10 QUIC connetions with 1 Stream 4. 10 QUIC connections with 10 Streams

with stream sizes to provide reasonable test durations. The VPP Host Stack QUIC transport
is configured to utilize the picotls encryption library. In the future, tests utilizing addtional
encryption algorithms will be added.

1.5.11 Reconfiguration Tests

Important: DISCLAIMER: Described reconf test methodology is experimental, and subject to change
following consultation within csit-dev, vpp-dev and user communities. Current test results should be
treated as indicative.

Overview

Reconf tests are designed to measure the impact of VPP re-configuration on data plane traffic. While
VPP takes some measures against the traffic being entirely stopped for a prolonged time, the immediate
forwarding rate varies during the re-configuration, as some configurations steps need the active dataplane
worker threads to be stopped temporarily.

As the usual methods of measuring throughput need multiple trial measurements with somewhat long
durations, and the re-configuration process can also be long, finding an offered load which would result
in zero loss during the re-configuration process would be time-consuming.

Instead, reconf tests find a througput value (lower bound for NDR) without re-configuration, and then
maintain that ofered load during re-configuration. The measured loss count is then assumed to be caused
by the re-configuration process. The result published by reconf tests is the effective blocked time, that is
the loss count divided by the offered load.

Current Implementation

Each reconf suite is based on a similar MLRsearch performance suite.

MLRsearch parameters are changed to speed up the throughput discovery. For example, PDR is not
searched for, and final trial duration is shorter.

The MLRsearch suite has to contain a configuration parameter that can be scaled up, e.g. number of routes
or number of service chains. Currently, only increasing the scale is supported as the re-configuration
operation. In future, scale decrease or other operations can be implemented.

The traffic profile is not changed, so the traffic present is processed only by the smaller scale configuration.
The added routes / chains are not targetted by the traffic.

30 Chapter 1. Introduction



CSIT REPORT, Release rls2001

For the re-configuration, the same Robot Framework and Python libraries are used, as were used in the
initial configuration, with the exception of the final calls that do not interact with VPP (e.g. starting virtual
machines) being skipped to reduce the test overall duration.

Discussion

Robot Framework introduces a certain overhead, which may affect timing of individual VPP API calls,
which in turn may affect the number of packets lost.

The exact calls executed may contain unnecessary info dumps, repeated commands, or commands which
change a value that do not need to be changed (e.g. MTU). Thus, implementation details are affecting the
results, even if their effect on the corresponding MLRsearch suite is negligible.

The lower bound for NDR is the only value safe to be used when zero packets lost are expected without re-
configuration. But different suites show different “jitter” in that value. For some suites, the lower bound
is not tight, allowing full NIC buffers to drain quickly between worker pauses. For other suites, lower
bound for NDR still has quite a large probability of non-zero packet loss even without re-configuration.

But the results show very high effective blocked time, so the two objections related to NDR lower bound
are negligible in comparison.

1.5.12 VPP Startup Settings

CSIT code manipulates a number of VPP settings in startup.conf for optimized performance. List of com-
mon settings applied to all tests and test dependent settings follows.

See VPP startup.conf?* for a complete set and description of listed settings.

Common Settings

List of VPP startup.conf settings applied to all tests:
1. heap-size <value> - set separately for ip4, ip6, stats, main depending on scale tested.

2. no-tx-checksum-offload - disables UDP / TCP TX checksum offload in DPDK. Typically needed for
use faster vector PMDs (together with no-multi-seg).

3. buffers-per-numa <value> - sets a number of memory buffers allocated to VPP per CPU socket.
VPP default is 16384. Needs to be increased for scenarios with large number of interfaces and
worker threads. To accommodate for scale tests, CSIT is setting it to the maximum possible value
corresponding to the limit of DPDK memory mappings (currently 256). For Xeon Skylake platforms
configured with 2MB hugepages and VPP data-size and buffer-size defaults (2048B and 2496B
respectively), this results in value of 215040 (256 * 840 = 215040, 840 * 2496B buffers fit in 2MB
hugepage ). For Xeon Haswell nodes value of 107520 is used.

Per Test Settings

List of vpp startup.conf settings applied dynamically per test:

1. corelist-workers <list_of_cores> - list of logical cores to run VPP worker data plane threads. De-
pends on HyperThreading and core per test configuration.

2. num-rx-queues <value> - depends on a number of VPP threads and NIC interfaces.

3. no-multi-seg - disables multi-segment buffers in DPDK, improves packet throughput, but disables
Jumbo MTU support. Disabled for all tests apart from the ones that require Jumbo 9000B frame
support.

4. UIO driver - depends on topology file definition.

24 https://git.fd.io/vpp/tree/src/vpp/conf/startup.conf?h=stable/2001&id=fce396738f865293f0a023bc7f172086f81da456

1.5. Test Methodology 31


https://git.fd.io/vpp/tree/src/vpp/conf/startup.conf?h=stable/2001&id=fce396738f865293f0a023bc7f172086f81da456

CSIT REPORT, Release rls2001

5. QAT VFs - depends on NRThreads, each thread = 1QAT VFs.

1.5.13 KVM VMs vhost-user

QEMU is used for KVM VM vhost-user testing enviroment. By default, standard QEMU version is used,
preinstalled from OS repositories (gemu-2.11.1 for Ubuntu 18.04, gemu-2.5.0 for Ubuntu 16.04). The
path to the QEMU binary can be adjusted in Constants.py.

FD.io CSIT performance lab is testing VPP vhost-user with KVM VMs using following environment set-
tings:

CSIT supports two types of VMs:

¢ Image-VM: used for all functional, VPP_device, and regular performance tests except NFV density
tests.

e Kernel-VM: new VM type introduced for NFV density tests to provide greater in-VM application
install flexibility and to further reduce test execution time by simpler VM lifecycle management.

Image-VM

CSIT can use a pre-created VM image. The path to the image can be adjusted in Constants.py. For con-
venience and full compatibility CSIT repository contains a set of scripts to prepare Built-root?> based
embedded Linux image with all the dependencies needed to run DPDK Testpmd, DPDK L3Fwd, Linux
bridge or Linux IPv4 forwarding.

Built-root was chosen for a VM image to make it lightweight and with fast booting time to limit impact
on tests duration.

In order to execute CSIT tests, VM image must have following software installed: gemu-guest-agent, sshd,
bridge-utils, VirtlO support and DPDK Testpmd/L3fwd applications. Username/password for the VM
must be cisco/ciscoand NOPASSWD sudo access. The interface naming is based on the driver (management
interface type is Intel E1000), all E1000 interfaces will be named mgmt<n> and all VirtlO interfaces will
be named virtio<n>. In VM /etc/init.d/gemu-guest-agent must be set to TRANSPORT=isa-serial:/
dev/ttyS1 because ttySO is used by serial console and ttyS1 is dedicated for gemu-guest-agent in QEMU
setup.

Kernel-VM

CSIT can use a kernel KVM image as a boot kernel, as an alternative to image VM. This option allows
better configurability of what application is running in VM userspace. Using root9p filesystem allows
mapping the host-OS filesystem as read only guest-OS filesystem.

Example of custom init script for the kernel-VM:

#!/bin/bash

mount -t sysfs -o "nodev,noexec,nosuid” sysfs /sys

mount -t proc -o "nodev,noexec,nosuid” proc /proc

mkdir /dev/pts

mkdir /dev/hugepages

mount -t devpts -o "rw,noexec,nosuid,gid=5,mode=0620" devpts /dev/pts || true
mount -t tmpfs -o "rw,noexec,nosuid,size=10%,mode=0755" tmpfs /run

mount -t tmpfs -o "rw,noexec,nosuid,size=10%,mode=0755" tmpfs /tmp

mount -t hugetlbfs -o "rw,relatime,pagesize=2M" hugetlbfs /dev/hugepages
echo 0000:00:06.0 > /sys/bus/pci/devices/0000:00:06.0/driver/unbind

echo 0000:00:07.0 > /sys/bus/pci/devices/0000:00:07.0/driver/unbind

echo vfio-pci > /sys/bus/pci/devices/0000:00:06.0/driver_override

echo vfio-pci > /sys/bus/pci/devices/0000:00:07.0/driver_override

(continues on next page)

25 https://buildroot.org/

32 Chapter 1. Introduction



https://buildroot.org/

CSIT REPORT, Release rls2001

(continued from previous page)

echo 0000:00:06.0 > /sys/bus/pci/drivers/vfio-pci/bind
echo 0000:00:07.0 > /sys/bus/pci/drivers/vfio-pci/bind
$vnf_bin

poweroff -f

QemuUtils library during runtime replaces the $vnf_bin variable by the path to NF binary and its param-
eters. This allows CSIT to run any application installed on host OS, for example the same version of VPP
as running on the host-OS.

Kernel-VM image must be available in the host filesystem as a prerequisite. The path to kernel-VM image
is defined in Constants.py.

1.5.14 LXC/DRC Container Memif

CSIT includes tests taking advantage of VPP memif virtual interface (shared memory interface) to inter-
connect VPP running in Containers. VPP vswitch instance runs in bare-metal user-mode handling NIC
interfaces and connecting over memif (Slave side) to VPPs running in Linux Container (LXC) or in Docker
Container (DRC) configured with memif (Master side). LXCs and DRCs run in a priviliged mode with VPP
data plane worker threads pinned to dedicated physical CPU cores per usual CSIT practice. All VPP in-
stances run the same version of software. This test topology is equivalent to existing tests with vhost-user
and VMs as described earlier in Logical Topologies (page 37).

In addition to above vswitch tests, a single memif interface test is executed. It runs in a simple topology
of two VPP container instances connected over memif interface in order to verify standalone memif
interface performance.

More information about CSIT LXC and DRC setup and control is available in Container Orchestration in
CSIT (page 339).

1.5.15 NFV Service Density

Network Function Virtualization (NFV) service density tests focus on measuring total per server through-
put at varied NFV service “packing” densities with vswitch providing host dataplane. The goal is to com-
pare and contrast performance of a shared vswitch for different network topologies and virtualization
technologies, and their impact on vswitch performance and efficiency in a range of NFV service configu-
rations.

Each NFV service instance consists of a set of Network Functions (NFs), running in VMs (VNFs) or in
Containers (CNFs), that are connected into a virtual network topology using VPP vswitch running in Linux
user-mode. Multiple service instances share the vswitch that in turn provides per service chain forwarding
context(s). In order to provide a most complete picture, each network topology and service configuration
is tested in different service density setups by varying two parameters:

e Number of service instances (e.g. 1,2,4..10).
e Number of NFs per service instance (e.g. 1,2,4..10).
Implementation of NFV service density tests in CSIT-2001 is using two NF applications:

e VNF: VPP of the same version as vswitch running in KVM VM, configured with /8 IPv4 prefix rout-
ing.

e CNF: VPP of the same version as vswitch running in Docker Container, configured with /8 IPv4
prefix routing.

Tests are designed such that in all tested cases VPP vswitch is the most stressed application, as for each
flow vswitch is processing each packet multiple times, whereas VNFs and CNFs process each packets
only once. To that end, all VNFs and CNFs are allocated enough resources to not become a bottleneck.

1.5. Test Methodology 33




CSIT REPORT, Release rls2001

Service Configurations

Following NFV network topologies and configurations are tested:
e VNF Service Chains (VSC) with L2 vswitch

- Network Topology: Sets of VNFs dual-homed to VPP vswitch over virtio-vhost links. Each set
belongs to separate service instance.

- Network Configuration: VPP L2 bridge-domain contexts form logical service chains of VNF sets
and connect each chain to physical interfaces.

e CNF Service Chains (CSC) with L2 vswitch

- Network Topology: Sets of CNFs dual-homed to VPP vswitch over memif links. Each set belongs
to separate service instance.

- Network Configuration: VPP L2 bridge-domain contexts form logical service chains of CNF sets
and connect each chain to physical interfaces.

e CNF Service Pipelines (CSP) with L2 vswitch

- Network Topology: Sets of CNFs connected into pipelines over a series of memif links, with edge
CNFs single-homed to VPP vswitch over memif links. Each set belongs to separate service
instance.

- Network Configuration: VPP L2 bridge-domain contexts connect each CNF pipeline to physical
interfaces.

Thread-to-Core Mapping
CSIT defines specific ratios for mapping software threads of vswitch and VNFs/CNFs to physical cores,
with separate ratios defined for main control threads and data-plane threads.

In CSIT-2001 NFV service density tests run on Intel Xeon testbeds with Intel Hyper-Threading enabled,
so each physical core is associated with a pair of sibling logical cores corresponding to the hyper-threads.

CSIT-2001 executes tests with the following software thread to physical core mapping ratios:
o vSwitch
- Data-plane on single core
* (main:core) = (1:1) => 1mtlc - 1 main thread on 1 core.
* (data:core) = (1:1) => 2dt1c - 2 Data-plane Threads on 1 Core.
- Data-plane on two cores
* (main:core) = (1:1) => 1mtlc - 1 Main Thread on 1 Core.
* (data:core) = (1:2) => 4dt2c - 4 Data-plane Threads on 2 Cores.
o VNF and CNF
- Data-plane on single core

* (main:core) = (2:1) => 2mtlc - 2 Main Threads on 1 Core, 1 Thread per NF, core shared
between two NFs.

* (data:core) = (1:1) => 2dtlc - 2 Data-plane Threads on 1 Core per NF.
- Data-plane on single logical core (Two NFs per physical core)

* (main:core) = (2:1) => 2mtlc - 2 Main Threads on 1 Core, 1 Thread per NF, core shared
between two NFs.

* (data:core) =(2:1) => 2dtlc - 2 Data-plane Threads on 1 Core, 1 Thread per NF, core shared
between two NFs.

34 Chapter 1. Introduction


data:core
data:core
data:core
data:core

CSIT REPORT, Release rls2001

Maximum tested service densities are limited by a number of physical cores per NUMA. CSIT-2001 allo-
cates cores within NUMAO. Support for multi NUMA tests is to be added in future release.

1.5.16 VPP_Device Functional

CSIT-2001 includes VPP_Device test environment for functional VPP device tests integrated into LFN
Cl/CD infrastructure. VPP_Device tests run on 1-Node testbeds (1n-skx, 1n-arm) and rely on Linux SRIOV
Virtual Function (VF), dotlg VLAN tagging and external loopback cables to facilitate packet passing over
exernal physical links. Initial focus is on few baseline tests. Existing CSIT Performance tests can be moved
to VPP_Device framework. RF test definition code stays unchanged with the exception of traffic gener-
ator related L2 KWs.

1.5.17 IPSec on Intel QAT

VPP IPSec performance tests are using DPDK cryptodev device driver in combination with HW cryptodev
devices - Intel QAT 8950 50G - present in LF FD.io physical testbeds. DPDK cryptodev can be used for
all IPSec data plane functions supported by VPP.

Currently CSIT-2001 implements following IPSec test cases:
e AES-GCM, CBC-SHAA1 ciphers, in combination with IPv4 routed-forwarding with Intel xI710 NIC.

e CBC-SHA1 ciphers, in combination with LISP-GPE overlay tunneling for IPv4-over-IPv4 with Intel
x1710 NIC.

1.5.18 TRex Traffic Generator

Usage

TRex traffic generator?® is used for all CSIT performance tests. TRex stateless mode is used to measure
NDR and PDR throughputs using MLRsearch and to measure maximum transer rate in MRR tests.

TRex is installed and run on the TG compute node. The typical procedure is:

o |f the TRex is not already installed on TG, it is installed in the suite setup phase - see TRex installa-
tion?’.

e TRex configuration is set in its configuration file

/etc/trex_cfg.yaml

e TRex is started in the background mode

$ sh -c 'cd <t-rex-install-dir>/scripts/ && sudo nohup ./t-rex-64 -i -c 7 --prefix $(hostname)._
—=-hdrh > /tmp/trex.log 2>&1 &' > /dev/null

e There are traffic streams dynamically prepared for each test, based on traffic profiles. The traffic is
sent and the statistics obtained using trex.stl.api.STLClient.

Measuring Packet Loss

Following sequence is followed to measure packet loss:
e Create an instance of STLClient.

e Connect to the client.

26 https:/wiki.fd.io/view/TRex
27 https://git.fd.io/csit/tree/resources/tools/trex/trex_installer.sh?h=rls2001

1.5. Test Methodology 35


https://wiki.fd.io/view/TRex
https://git.fd.io/csit/tree/resources/tools/trex/trex_installer.sh?h=rls2001
https://git.fd.io/csit/tree/resources/tools/trex/trex_installer.sh?h=rls2001

CSIT REPORT, Release rls2001

Add all streams.

Clear statistics.
e Send the traffic for defined time.
e Get the statistics.

If there is a warm-up phase required, the traffic is sent also before test and the statistics are ignored.
Measuring Latency
If measurement of latency is requested, two more packet streams are created (one for each direction) with

TRex flow_stats parameter set to STLFlowLatencyStats. In that case, returned statistics will also include
min/avg/max latency values.

36 Chapter 1. Introduction



CHAPTER
TWO

VPP PERFORMANCE

2.1 Overview

VPP performance test results are reported for all three physical testbed types present in FD.io labs: 3-
Node Xeon Haswell (3n-hsw), 3-Node Xeon Skylake (3n-skx), 2-Node Xeon Skylake (2n-skx) and installed
NIC models. For description of physical testbeds used for VPP performance tests please refer to Physical
Testbeds (page 4).

2.1.1 Logical Topologies

CSIT VPP performance tests are executed on physical testbeds described in Physical Testbeds (page 4).
Based on the packet path thru server SUTs, three distinct logical topology types are used for VPP DUT
data plane testing:

1. NIC-to-NIC switching topologies.
2. VM service switching topologies.

3. Container service switching topologies.

NIC-to-NIC Switching

The simplest logical topology for software data plane application like VPP is NIC-to-NIC switching. Tested
topologies for 2-Node and 3-Node testbeds are shown in figures below.

37



CSIT REPORT, Release rls2001

2-Node Topology: NIC-to-NIC Switching

System Under Test (SUT)

Linux
Kernel

Linux-H

NIC

et

Traffic Generator (TG)

3-Node Topology: NIC-to-NIC Switching

System Under Test 1 (SUT1) System Under Test 2 (SUT2)
Linux Linux D
Kernel Kernel
-
NIC | NIC
Traffic Generator (TG)

Server Systems Under Test (SUT) run VPP application in Linux user-mode as a Device Under Test (DUT).
Server Traffic Generator (TG) runs T-Rex application. Physical connectivity between SUTs and TG is pro-
vided using different drivers and NIC models that need to be tested for performance (packet/bandwidth

throughput and latency).

From SUT and DUT perspectives, all performance tests involve forwarding packets between two (or more)
physical Ethernet ports (10GE, 25GE, 40GE, 100GE). In most cases both physical ports on SUT are located
on the same NIC. The only exceptions are link bonding and 100GE tests. In the latter case only one port
per NIC can be driven at linerate due to PCle Gen3 x16 slot bandwidth limiations. 100GE NICs are not

supported in PCle Gen3 x8 slots.

38

Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Note that reported VPP DUT performance results are specific to the SUTs tested. SUTs with other pro-
cessors than the ones used in FD.io lab are likely to yield different results. A good rule of thumb, that
can be applied to estimate VPP packet thoughput for NIC-to-NIC switching topology, is to expect the
forwarding performance to be proportional to processor core frequency for the same processor architec-
ture, assuming processor is the only limiting factor and all other SUT parameters are equivalent to FD.io
CSIT environment.

VM Service Switching

VM service switching topology test cases require VPP DUT to communicate with Virtual Machines (VMs)
over vhost-user virtual interfaces.

Two types of VM service topologies are tested in CSIT-2001:

1. “Parallel” topology with packets flowing within SUT from NIC(s) via VPP DUT to VM, back to VPP
DUT, then out thru NIC(s).

2. “Chained” topology (a.k.a. “Snake”) with packets flowing within SUT from NIC(s) via VPP DUT to
VM, back to VPP DUT, then to the next VM, back to VPP DUT and so on and so forth until the last
VM in a chain, then back to VPP DUT and out thru NIC(s).

For each of the above topologies, VPP DUT is tested in a range of L2 or IPv4/IPvé configurations de-
pending on the test suite. Sample VPP DUT “Chained” VM service topologies for 2-Node and 3-Node
testbeds with each SUT running N of VM instances is shown in the figures below.

2-Node Topology: VM Service Switching

System Under Test (SUT)

VM[1]

VM[2]

VM[n]

Linux
Kernel

I'NICH

Traffic Generator

2.1. Overview 39



CSIT REPORT, Release rls2001

3-Node Topology: VM Service Switching

System Under Test 1 (SUT1) System Under Test 2 (SUT2)
VM[1] VM[2] VM[1] VM[2]
Linux Linux
Kernel Kernel
"(Linux-Host } " Linux-Host }
Traffic Generator (TG)

In “Chained” VM topologies, packets are switched by VPP DUT multiple times: twice for a single VM,
three times for two VMs, N+1 times for N VMs. Hence the external throughput rates measured by TG
and listed in this report must be multiplied by N+1 to represent the actual VPP DUT aggregate packet
forwarding rate.

For “Parallel” service topology packets are always switched twice by VPP DUT per service chain.

Note that reported VPP DUT performance results are specific to the SUTs tested. SUTs with other proces-
sor than the ones used in FD.io lab are likely to yield different results. Similarly to NIC-to-NIC switching
topology, here one can also expect the forwarding performance to be proportional to processor core
frequency for the same processor architecture, assuming processor is the only limiting factor. However
due to much higher dependency on intensive memory operations in VM service chained topologies and
sensitivity to Linux scheduler settings and behaviour, this estimation may not always yield good enough
accuracy.

Container Service Switching

Container service switching topology test cases require VPP DUT to communicate with Containers (Ctrs)
over memif virtual interfaces.

Three types of VM service topologies are tested in CSIT-2001:

1. “Parallel” topology with packets flowing within SUT from NIC(s) via VPP DUT to Container, back to
VPP DUT, then out thru NIC(s).

2. “Chained” topology (a.k.a. “Snake”) with packets flowing within SUT from NIC(s) via VPP DUT to
Container, back to VPP DUT, then to the next Container, back to VPP DUT and so on and so forth
until the last Container in a chain, then back to VPP DUT and out thru NIC(s).

3. “Horizontal” topology with packets flowing within SUT from NIC(s) via VPP DUT to Container, then
via “horizontal” memif to the next Container, and so on and so forth until the last Container, then
back to VPP DUT and out thru NIC(s).

For each of the above topologies, VPP DUT is tested in a range of L2 or IPv4/IPvé6 configurations depend-
ing on the test suite. Sample VPP DUT “Chained” Container service topologies for 2-Node and 3-Node
testbeds with each SUT running N of Container instances is shown in the figures below.

40 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

— 2-Node Topology: Container Service Switching —

System Under Test (SUT)

Ctr[1] Ctr[2] Ctr[n]

Linux i i i i i i

Kernel

NIC

{4

Traffic Generator

3-Node Topology: Container Service Switching

System Under Test 1 (SUT1) System Under Test 2 (SUT2)
Ctr[1] Ctr[2] Ctr[n] Ctr[1] Ctr[2] Ctr[n]
Linux E H E E Linux m
- “ - “
] NIC‘I [ NIC‘I
- 4

Traffic Generator (TG)

In “Chained” Container topologies, packets are switched by VPP DUT multiple times: twice for a single
Container, three times for two Containers, N+1 times for N Containers. Hence the external throughput
rates measured by TG and listed in this report must be multiplied by N+1 to represent the actual VPP
DUT aggregate packet forwarding rate.

For a “Parallel” and “Horizontal” service topologies packets are always switched by VPP DUT twice per
service chain.

Note that reported VPP DUT performance results are specific to the SUTs tested. SUTs with other proces-
sor than the ones used in FD.io lab are likely to yield different results. Similarly to NIC-to-NIC switching
topology, here one can also expect the forwarding performance to be proportional to processor core fre-
qguency for the same processor architecture, assuming processor is the only limiting factor. However due

2.1. Overview 41



CSIT REPORT, Release rls2001

to much higher dependency on intensive memory operations in Container service chained topologies and
sensitivity to Linux scheduler settings and behaviour, this estimation may not always yield good enough
accuracy.

2.1.2 Performance Tests Coverage

Performance tests measure following metrics for tested VPP DUT topologies and configurations:

o Packet Throughput: measured in accordance with RFC 254428 using FD.io CSIT Multiple Loss Ratio
search (MLRsearch), an optimized binary search algorithm, producing throughput at different Packet
Loss Ratio (PLR) values:

- Non Drop Rate (NDR): packet throughput at PLR=0%.
- Partial Drop Rate (PDR): packet throughput at PLR=0.5%.
e One-Way Packet Latency: measured at different offered packet loads:
- 100% of discovered NDR throughput.
- 100% of discovered PDR throughput.

e Maximum Receive Rate (MRR): measure packet forwarding rate under the maximum load offered
by traffic generator over a set trial duration, regardless of packet loss. Maximum load for specified
Ethernet frame size is set to the bi-directional link rate.

CSIT-2001 includes following VPP data plane functionality performance tested across a range of NIC
drivers and NIC models:

28 https://tools.ietf.org/html/rfc2544.html

42 Chapter 2. VPP Performance


https://tools.ietf.org/html/rfc2544.html

CSIT REPORT, Release rls2001

Functionality

Description

ACL

L2 Bridge-Domain switching and IPv4and IPvé routing with iACL and oACL IP ad-
dress, MAC address and L4 port security.

CcoP IPv4 and IPvé6 routing with COP address security.

IPv4 IPv4 routing.

IPvé IPvé6 routing.

IPv4 Scale IPv4 routing with 20k, 200k and 2M FIB entries.

IPvé Scale IPv6 routing with 20k, 200k and 2M FIB entries.

IPSecHW IPSec encryption with AES-GCM, CBC-SHA-256 ciphers, in combination with IPv4
routing. Intel QAT HW acceleration.

IPSec+LISP IPSec encryption with CBC-SHA1 ciphers, in combination with LISP-GPE overlay tun-
neling for IPv4-over-1Pv4.

IPSecSW IPSec encryption with AES-GCM, CBC-SHA-256 ciphers, in combination with IPv4
routing.

KVM VMs | Virtual topologies with service chains of 1 VM using vhost-user interfaces, with dif-

vhost-user ferent VPP forwarding modes incl. L2XC, L2BD, VXLAN with L2BD, IPv4 routing.

L2BD L2 Bridge-Domain switching of untagged Ethernet frames with MAC learning; dis-
abled MAC learning i.e. static MAC tests to be added.

L2BD Scale L2 Bridge-Domain switching of untagged Ethernet frames with MAC learning; dis-
abled MAC learning i.e. static MAC tests to be added with 20k, 200k and 2M FIB
entries.

L2XC L2 Cross-Connect switching of untagged, dotlq, dotlad VLAN tagged Ethernet
frames.

LISP LISP overlay tunneling for IPv4-over-IPv4, IPvé6-over-IPv4, IPv6-over-IPvé, IPv4-
over-IPvé in IPv4 and IPvé routing modes.

LXC/DRC Container VPP memif virtual interface tests with different VPP forwarding modes

Containers incl. L2XC, L2BD.

Memif

NAT (Source) Network Address Translation tests with varying number of users and ports
per user.

QoS Policer Ingress packet rate measuring, marking and limiting (IPv4).

SRvé Routing | Segment Routing IPvé tests.

VPP TCP/IP | Tests of VPP TCP/IP stack used with VPP built-in HTTP server.

stack

VTS Virtual Topology System use case tests combining VXLAN overlay tunneling with
L2BD, ACL and KVM VM vhost-user features.

VXLAN VXLAN overlay tunnelling integration with L2XC and L2BD.

Execution of performance tests takes time, especially the throughput tests. Due to limited HW testbed
resources available within FD.io labs hosted by LF, the number of tests for some NIC models has been
limited to few baseline tests.

2.1.3 Performance Tests Naming

FD.io CSIT-2001 follows a common structured naming convention for all performance and system func-
tional tests, introduced in CSIT-17.01.

The naming should be intuitive for majority of the tests. Complete description of FD.io CSIT test naming
convention is provided on Test Naming (page 436).

2.1. Overview

43



CSIT REPORT, Release rls2001

2.2 Release Notes

2.2.1 Changes in CSIT-2001

1. VPP PERFORMANCE TESTS

Intel Xeon 2n-skx, 3n-skx and 2n-clx testbeds: VPP performance test data is not included in
this report version. This is due to the lower performance and behaviour inconsistency of these
systems following the upgrade of processor microcode packages (skx ucode 0x2000064, clx
ucode 0x500002c), done as part of updating Ubuntu 18.04 LTS kernel version. Tested VPP
and DPDK applications (L3fwd) are affected. Skx and Clx test data will be added in subsequent
maintenance report version(s) once the issue is resolved. See Known Issues (page 46).

Service density 2n-skx tests: Added new NF density tests with IPsec encryption between
DUTs.

AVF tests: Full test coveraged based on code changes in CSIT core layer (driver/interface
awareness) and generated by suite generator (Intel Fortville NICs only).

Hoststack tests: Major refactor of VPP Hoststack TCP/IP performance tests using WRK gen-
erator talking to the VPP HTTP static server plugin measuring connections per second and
requests per second. Added new iperf3 with LDPreload tests, iperf3/LDPreload tests with
packet loss induced via the VPP NSIM (Network Simulator) plugin, and QUIC/UDP/IP trans-
port tests. All of the new tests measure goodput through the VPP Hoststack from client to
server.

Latency HDRHistogram: Added High Dynamic Range Histogram latency measurements based
on the new capability in TRex traffic generator. HDRH latency data presented in latency packet
percentile graphs and in detailed results tables.

Mellanox MCX556A-EDAT tests: Added tests with Mellanox ConnectX5-2p100GE NICs in
2n-clx testbeds using VPP native rdma driver.

IPsec reconfiguration tests: Added tests measuring the impact of IPsec tunnels creations and
removals.

Load Balancer tests: Added VPP performance tests for Maglev, L3DSR (Direct Server Return),
Layer 4 Load Balancing NAT Mode.

2. TEST FRAMEWORK

CSIT Python3 support: Full migration of CSIT from Python2.7 to Python3.6. This change in-
cludes library migration, PIP dependency upgrade, CSIT container images, infrastructure pack-
ages ugrade/installation.

CSIT PAPI support: Finished conversion of CSIT VAT L1 keywords to PAPI L1 KWs in CSIT
using VPP Python bindings (VPP PAPI). Redesign of key components of PAPI Socket Executor
and PAPI history. Due to issues with PAPI performance, VAT is still used in CSIT for all VPP
scale tests. See known issues below.

Test Suite Generator: Added capability to generate suites for different drivers per NIC model
including DPDK, AVF, RDMA. Extended coverage for all tests.

General Code Housekeeping: Ongoing RF keywords optimizations, removal of redundant RF
keywords and aligning of suite/test setup/teardowns.

3. TEST ENVIRONMENT

TRex Fortville NIC Performance: Received FVL fix from Intel resolving TRex low throughput
issue. TRex per FVL NIC throughput increased from ~27 Mpps to the nominal ~37 Mpps. For
detail see CSIT-15032? and TRex-51939].

29 https://jira.fd.io/browse/CSIT-1503
30 https:/trex-tgn.cisco.com/youtrack/issue/trex-519

44

Chapter 2. VPP Performance


https://jira.fd.io/browse/CSIT-1503
https://trex-tgn.cisco.com/youtrack/issue/trex-519

CSIT REPORT, Release rls2001

¢ New Intel Xeon Cascadelake Testbeds: Added performance tests for 2-Node-Cascadelake (2n-
clx) testbeds with x710, xxv710 and mcx556a-edat NIC cards.

4. PRESENTATION AND ANALYTICS LAYER

¢ Graphs layout improvements: Improved performance graphs layout for better readibility and
maintenance: test grouping, axis labels, descriptions, other informative decoration.

e Latency graphs: Min/Avg/Max group bar latency graphs are replaced with packet latency per-
centile distributon at different background packet loads based on TRex latency hdrhistogram
measurements.

2.2. Release Notes 45



CSIT REPORT, Release rls2001

2.2.2 Known Issues

List of known issues in CSIT-2001 for VPP performance tests:

# | Ji- Issue Description
ralD
1 | CSIT} Sporadic (1 in 200) NDR discovery test failures on x520. DPDK reporting rx-errors, indi-
5703 cating L1 issue. Suspected issue with HW combination of X710-X520 in LF testbeds. Not
observed outside of LF testbeds.
2 | VPP4{ 9000B packets not supported by NICs VIC1227 and VIC1387.
6623
3 | CSIT; Memif tests are sporadically failing on initialization of memif connection.
149933
4 | VPP 9000B ip4 nat44: VPP crash + coredump. VPP crashes very often in case that NAT44 is
1677%tonfigured and it has to process IP4 jumbo frames (9000B).
5 | CSITt AllCSIT scale tests can not use PAPI due to much slower performance compared to VAT/CLI
15913%it takes much longer to program VPP). This needs to be addressed on the PAPI side.
VPP-
176336
6 | VPP IPv4 IPSEC 9000B packet tests are failing as no packet is forwarded. Reason: chained
16753%buffers are not supported.
7 | CSITt IPv4 AVF 9000B packet tests are failing on 3n-skx while passing on 2n-skx.
159338
8 | CSITt Intel Xeon 2n-skx, 3n-skx and 2n-clx testbeds behaviour and performance became incon-
1675°%Sistent following the upgrade to the latest Ubuntu 18.04 LTS kernel version (4.15.0-72-
generic) and associated microcode packages (skx ucode 0x2000064, clx ucode 0x500002c).
VPP as well as DPDK L3fwd tests are affected.

31 https://jira.fd.io/browse/CSIT-570

32 https://jira.fd.io/browse/VPP-662

33 https://jira.fd.io/browse/CSIT-1498
34 https://jira.fd.io/browse/VPP-1677
35 https://jira.fd.io/browse/CSIT-1499
36 https://jira.fd.io/browse/VPP-1763
37 https://jira.fd.io/browse/VPP-1675
38 https://jira.fd.io/browse/CSIT-1593
39 https://jira.fd.io/browse/CSIT-1675

46

Chapter 2. VPP Performance



https://jira.fd.io/browse/CSIT-570
https://jira.fd.io/browse/CSIT-570
https://jira.fd.io/browse/VPP-662
https://jira.fd.io/browse/VPP-662
https://jira.fd.io/browse/CSIT-1498
https://jira.fd.io/browse/CSIT-1498
https://jira.fd.io/browse/VPP-1677
https://jira.fd.io/browse/VPP-1677
https://jira.fd.io/browse/CSIT-1499
https://jira.fd.io/browse/CSIT-1499
https://jira.fd.io/browse/VPP-1763
https://jira.fd.io/browse/VPP-1763
https://jira.fd.io/browse/VPP-1675
https://jira.fd.io/browse/VPP-1675
https://jira.fd.io/browse/CSIT-1593
https://jira.fd.io/browse/CSIT-1593
https://jira.fd.io/browse/CSIT-1675
https://jira.fd.io/browse/CSIT-1675

CSIT REPORT, Release rls2001

2.3 Packet Throughput

Throughput graphs are generated based on the results data obtained from the CSIT-2001 test jobs. In or-
der to verify benchmark results repeatibility selected, CSIT performance tests are executed multiple times
(target: 10 times) on each physical testbed type. Box-and-Whisker plots are used to display variations in
measured throughput values.

Lists of tests selected for multiple execution and graphing are captured per testbed type in
test_select_list_{testbed_type}.md*° files.

Graphs are split into sections as follows:
1. Header 1: VPP packet path and lookup types

e L2 Ethernet Switching: L2 bridge-doman, L2 cross-connect and L2 patch
e IPv4 Routing: IPv4 routing with /32 prefixes
¢ IPv6 Routing: IPvé routing with /128 prefixes
e SRv6 Routing: SRv6 with IPvé6 routing
¢ |IPv4 Tunnels: IPv4 overlay tunnels
¢ KVM VMs vhost-user: KVM VMs connected over virtio and vhost-user interfaces

¢ LXC/DRC Container Memif: Linux containers and Docker containers connected over Memif
interfaces

¢ IPsec IPv4 Routing: IPsec encryption/decryption with IPv4 routing
¢ Virtual Topology System: VXLAN configurations with L2 bridge-domains
2. Header 2: testbeds and NIC models
e section name format:
- {testbed_type}-{nic_model}
e testbed_type:
- 2n-skx: 2-node Xeon Skylake

3n-skx: 3-node Xeon Skylake

2n-clx: 2-node Xeon Cascade Lake

3n-hsw: 3-node Xeon Haswell

3n-tsh: 3-node Arm TaiShan

2n-dnv: 2-node Atom Denverton

3n-dnv: 3-node Atom Denverton

e nic_model:

xxv710: xxv710 2p25GE Intel (Fortville)
x710: x710 4p10GE Intel (Fortville)
xI710: xI710 2p40GE Intel (Fortville)
x520: x520 2p10GE Intel (Niantic)
x553: x553 2p10GE Intel (Niantic)

3. Header 3: test group names

e section name format:

40 https://git.fd.io/csit/tree/docs/job_specs

2.3. Packet Throughput 47


https://git.fd.io/csit/tree/docs/job_specs

CSIT REPORT, Release rls2001

- {frame_size}-{worker_thread_core_cfg}-{vpp_functionality}-{vpp_lookup_type}-
{baseline_scale}-{nic_driver}

e frame_size:

64b: 64 byte frames, smallest frame size for untagged IPv4 packets

78b: 78 byte frames, smallest frame size for untagged IPvé packets
114b: VXLAN encapsulated L2 frames
- imix: a sequence of (7x64B, 4x570, 1x1518) byte frames

e worker_thread_core_cfg:

- 1tlc: 1 worker thread on 1 core, hyper-threading not used
- 2tlc: 2 worker threads on 1 core, hyper-threading used
¢ vpp_functionality (optional):

- features: including input-acl, output-acl, macip-iacl, nat44

srvé: srvé encap/decap, proxy

link-bonding: L2 link aggregation with 1 or 2 bonded links

- ipsec: IPsec encryption/decryption with different ciphers

vts: Virtual Topology System specific tests
e vpp_lookup_type:

- |2switching, ip4routing, ipérouting, ip4tunnel, vhost, memif
¢ baseline_scale:

- base: baseline tests with less than 10 forwarding entries

- scale: scale tests with up to 2 million forwarding entries

- base-scale: both baseline and scale tests grouped together
e nic_driver:

- avf: VPP native avf driver for Intel Fortville NICs

- i40e: dpdk poll mode driver for Intel Fortville NICs

- ixgbe: dpdk poll mode driver for Intel Niantic NICs

For each test case, Box-and-Whisker plots show the quartiles (Min, 1st quartile / 25th percentile, 2nd
quartile / 50th percentile / mean, 3rd quartile / 75th percentile, Max) across collected data set. Outliers
are plotted as individual points.

Additional information about graph data:

1. Graph Title: describes tested packet path, testbed topology, processor model, NIC model, packet
size, number of cores and threads used by data plane workers and indication of VPP DUT configu-
ration.

2. X-axis Labels: indices of individual test suites as listed in Graph Legend.
3. Y-axis Labels: measured Packets Per Second [pps] throughput values.

4. Graph Legend: lists X-axis indices with associated CSIT test suites executed to generate graphed
test results.

5. Hover Information: lists minimum, first quartile, median, third quartile, and maximum. If either
type of outlier is present the whisker on the appropriate side is taken to 1.5xIQR from the quartile
(the “inner fence”) rather than the max or min, and individual outlying data points are displayed as
unfilled circles (for suspected outliers) or filled circles (for outliers). (The “outer fence” is 3xIQR from
the quartile.)

48 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Note: Test results have been generated by FD.io test executor vpp performance job 2n-skx*, FD.io test
executor vpp performance job 3n-skx#2, FD.io test executor vpp performance job 2n-cIx*3, FD.io test
executor vpp performance job 3n-hsw**, FD.io test executor vpp performance job 3n-tsh*?, FD.io test
executor vpp performance job 2n-dnv#® and FD.io test executor vpp performance job 3n-dnv#” with RF
result files csit-vpp-perf-2001-*.zip archived here. Required per test case data set size is 10, but for VPP
tests the actual size varies per test case and is <=10.

41 https:/jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-2n-skx
42 https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-3n-skx
43 https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-2n-clx

44 https:/jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-3n-hsw
45 https:/jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-3n-tsh

46 https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-2n-dnv
47 https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-3n-dnv

2.3. Packet Throughput 49


https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-2n-skx
https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-3n-skx
https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-3n-skx
https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-2n-clx
https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-3n-hsw
https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-3n-hsw
https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-3n-tsh
https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-2n-dnv
https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-2n-dnv
https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-3n-dnv

CSIT REPORT, Release rls2001

2.3.1 L2 Ethernet Switching

Following sections include summary graphs of VPP Phy-to-Phy performance with L2 Ethernet switching,
including NDR throughput (zero packet loss) and PDR throughput (<0.5% packet loss). Performance is re-
ported for VPP running in multiple configurations of VPP worker thread(s), a.k.a. VPP data plane thread(s),
and their physical CPU core(s) placement.

CSIT source code for the test cases used for plots can be found in CSIT git repository?®.

48 https://git.fd.io/csit/tree/tests/vpp/perf/12?h=rls2001

50 Chapter 2. VPP Performance


https://git.fd.io/csit/tree/tests/vpp/perf/l2?h=rls2001

CSIT REPORT, Release rls2001

3n-hsw-x1710

64b-1t1c-12switching-base-scale-dpdk

2.3. Packet Throughput 51



CSIT REPORT, Release rls2001

52 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

3n-tsh-x520

64b-1tlc-12switching-base-ixgbe

Throughput: 3n-tsh-x520-64b-1t1 c—I25witching—l%se-lxgbe—ndr

8.00

7.00

6.00

Packet Throughput [Mpps]
Py A
o o
o o

w
=}
S

2.00

1.00

0.00

1 2

Test Cases [Index]

O 1.(05 runs) dot1g-I2xcbase

I 2. (05 runs) eth-12xcbase

[ 3.(05 runs) dot1g-I2bdbasemaclrn
I 4. (05 runs) eth-I2bdbasemacirn

3

2.3. Packet Throughput

53



CSIT REPORT, Release rls2001

Throughput: 3n-tsh-x520-64b-1t1 c-IZSwitching—@&se—‘\xgbe-pdr

8.00

7.00

6.00

v
o
s}

Packet Throughput [Mpps]
w >
o o
o o

2.00

1.00

0.00

1 2

Test Cases [Index]

B 1.(05 runs) dot1g-I2xcbase

I 2.(05 runs) eth-I2xcbase

[ 3.(05 runs) dot1q-I12bdbasemacirn
[ 4. (05 runs) eth-I2bdbasemacirn

3

54

Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

64b-1tlc-12switching-base-scale-ixghe

Throughput: 3n-tsh-x520-64b-1t1 c-I25witching—l%se—scale—ixgbe—ndr - i}

9.00

8.00

7.00

» v o
o =} =}
S S S

Packet Throughput [Mpps]

w
o
S

1.00

0.00

==

1 2 3 4

Test Cases [Index]
B 1.(05 runs) eth-12patch
I 2.(05 runs) eth-I2xcbase
[ 3. (05 runs) eth-I2bdbasemacirn
[ 4. (04 runs) eth-I2bdscale10kmaclirn
5. (04 runs) eth-I2bdscale100kmaclrn
[1 6. (05 runs) eth-I2bdscaleTmmacirn

2.3. Packet Throughput

55



CSIT REPORT, Release rls2001

Throughput: 3n-tsh-x520-64b-1t1 c-IZSwitching—@se—scale-ixgbefpdr - i}

9.00

8.00

7.00

» v o
o =} o
S S S

Packet Throughput [Mpps]

w
o
S

2.00

1.00

0.00

1 2 3 4

Test Cases [Index]
B 1.(05 runs) eth-12patch
I 2.(05 runs) eth-I2xcbase
[ 3. (05 runs) eth-I2bdbasemacirn
[ 4. (04 runs) eth-I2bdscale10kmaclirn
5. (04 runs) eth-I2bdscale100kmaclrn
] 6. (05 runs) eth-I2bdscaletmmacirn

56

Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

64b-1tlc-features-12switching-base-ixgbe

Throughput: 3n-tsh-x520-64b-1t1 c-features-lZS\ﬂtching»basefixgbefncﬂ' i}

7.00

6.00

5.00

Packet Throughput [Mpps]

2.00

1.00

0.00

1 2 3 4 5

Test Cases [Index]
1. (05 runs) eth-I2bdbasemacirn
[ 2. (05 runs) eth-I2bdbasemaclrn-iacl50sf-10kflows
[ 3. (05 runs) eth-I2bdbasemaclrn-iacl50sl-10kflows
[ 4. (05 runs) eth-I2bdbasemaclrn-oacl50sf-10kflows
5. (05 runs) eth-I2bdbasemaclrn-oacl50sl-10kflows
[ 6. (04 runs) eth-12bdbasemaclrn-macip-iacl50sl-10kflows

2.3. Packet Throughput

57



CSIT REPORT, Release rls2001

Throughput: 3n-tsh-x520-64b-1t1 c-features-lZS\ﬂtching-basefixgbefpcﬂ' i}

7.00

6.00

5.00

»
=
S

Packet Throughput [Mpps]
&
o

2.00

1.00

0.00

1 2 3 4 5

Test Cases [Index]

I 1. (05 runs) eth-I2bdbasemaclrn
[ 2. (05 runs) eth-I2bdbasemaclrn-iacl50sf-10kflows
[ 3. (05 runs) eth-I2bdbasemaclrn-iacl50sl-10kflows
[ 4. (05 runs) eth-I2bdbasemaclrn-oacl50sf-10kflows
5. (05 runs) eth-I2bdbasemaclrn-oacl50sl-10kflows
[ 6. (04 runs) eth-12bdbasemaclrn-macip-iacl50sl-10kflows

58

Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

2n-dnv-x553

64b-1tlc-12switching-base-ixgbe

Throughput: 2n—dnv—x553—64b—1t1c—I25witching-@ase—ixgbe-ndr - i}
9.00

8.00

7.00

6.00

v
o
s)

Packet Throughput [Mpps]
=
o

3.00

2.00

1.00

0.00

Test Cases [Index]

[ 1.(10 runs) eth-I2xcbase [ 2. (10 runs) eth-I2bdbasemacirn

2.3. Packet Throughput 59



CSIT REPORT, Release rls2001

Throughput: 2n-dnv-x553-64b-1t1 c-I25witching—@ase—ixgbe»pdr

9.00

8.00

7.00

6.00

w
o
S

Packet Throughput [Mpps]
5
o

3.00

2.00

1.00

0.00

Test Cases [Index]

I 1.(10 runs) eth-I2xcbase [ 2. (10 runs) eth-I2bdbasemaclrn

60

Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

64b-1tlc-12switching-base-scale-ixghe

Throughput: 2n-dnv-x553-64b-1t1 c-I25witching—§bse—sca\e»ixgbe»ndr - i}

12.0

10.0

8.00

6.00

Packet Throughput [Mpps]

4.00
===

2.00

0.00
1 2 3 4

Test Cases [Index]

O 1. (10 runs) eth-12patch

I 2.(10 runs) eth-I2xcbase

[ 3.(10 runs) eth-I2bdbasemaclrn

[ 4.(10 runs) eth-I2bdscale10kmaclirn

2.3. Packet Throughput 61



CSIT REPORT, Release rls2001

Throughput: 2n-dnv-x553-64b-1t1 c-IZSwitching@ase—sca\e-ixgbefpdr - i}

10.0

8.00

6.00

Packet Throughput [Mpps]

4.00

2.00

0.00

1 2
Test Cases [Index]

O 1. (10 runs) eth-I2patch

[ 2. (10 runs) eth-I2xcbase

O 3.(10 runs) eth-I2bdbasemaclrn

[ 4.(10 runs) eth-I2bdscale10kmaclrn

3

62

Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

3n-dnv-x553

64b-1tlc-12switching-base-ixgbe

Throughput: 3n—dnv—x553—64b—1t1c—I25witching-@ase—ixgbe-ndr - i}
9.00

8.00

7.00

6.00

v
o
s)

Packet Throughput [Mpps]
=
o

3.00

2.00

1.00

0.00

Test Cases [Index]

[ 1.(10 runs) eth-I2xcbase [ 2. (09 runs) eth-I2bdbasemacirn

2.3. Packet Throughput 63



CSIT REPORT, Release rls2001

Throughput: 3n-dnv-x553-64b-1t1 c-I25witching—@ase—ixgbe»pdr

9.00

8.00

7.00

6.00

w
o
S

Packet Throughput [Mpps]
5
o

3.00

2.00

1.00

0.00

Test Cases [Index]

I 1.(10 runs) eth-I2xcbase [ 2. (09 runs) eth-I2bdbasemaclrn

64

Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

64b-1tlc-12switching-base-scale-ixghe

Throughput: 3n-dnv-x553-64b-1t1 c-I25witching—9€se—sca\e»ixgbe»ndr -

12.0

10.0

8.00

6.00

Packet Throughput [Mpps]

4.00

2.00

0.00

1 2 3 4

Test Cases [Index]

O 1. (10 runs) eth-12patch

I 2.(10 runs) eth-I2xcbase

[ 3.(09 runs) eth-I2bdbasemacirn

[ 4.(10 runs) eth-I2bdscale10kmaclirn

2.3. Packet Throughput

65



CSIT REPORT, Release rls2001

Throughput: 3n-dnv-x553-64b-1t1 c-IZSwitching@ase—sca\e-ixgbefpdr - i}

10.0

8.00

6.00

Packet Throughput [Mpps]

4.00

2.00

0.00

1 2

Test Cases [Index]

B 1.(10 runs) eth-12patch

I 2.(10 runs) eth-I2xcbase

O 3.(09 runs) eth-I2bdbasemaclrn

[ 4.(10 runs) eth-I2bdscale10kmaclrn

3

66

Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

64b-1tlc-features-12switching-base-ixgbe

Throughput: 3n-dnv-x553-64b-1t1 c-features—lZs@itching—base'ixgbe—n& i}
9.00

8.00

7.00

6.00

w
o
S

Packet Throughput [Mpps]
S
o

3.00

2.00

1.00

0.00
1

Test Cases [Index]

I 1.(10 runs) eth-12xcbase

2.3. Packet Throughput 67



CSIT REPORT, Release rls2001

Throughput: 3n-dnv-x553-64b-1t1 c-features—lZs@itching—base'ixgbe—p& i}

9.00

8.00

7.00

6.00

w
o
S

Packet Throughput [Mpps]
5
o

3.00

2.00

1.00

0.00

1
Test Cases [Index]

I 1.(10 runs) eth-12xcbase

68

Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

2.3.2 IPv4 Routing

Following sections include summary graphs of VPP Phy-to-Phy performance with IPv4 Routed-
Forwarding, including NDR throughput (zero packet loss) and PDR throughput (<0.5% packet loss). Per-
formance is reported for VPP running in multiple configurations of VPP worker thread(s), a.k.a. VPP data
plane thread(s), and their physical CPU core(s) placement.

CSIT source code for the test cases used for plots can be found in CSIT git repository®?.

49 https://git.fd.io/csit/tree/tests/vpp/perf/ip4?h=rls2001

2.3. Packet Throughput 69


https://git.fd.io/csit/tree/tests/vpp/perf/ip4?h=rls2001

CSIT REPORT, Release rls2001

3n-hsw-x1710

64b-1tlc-ip4routing-base-scale-dpdk

Throughput: 3n-hsw-xI1710-64b-1t1 c—ip4r0uting—@ese—sca\e—d pdkindr * i}

14.0

12.0

10.0

8.00

6.00

Packet Throughput [Mpps]

4.00

2.00

0.00

2 3

Test Cases [Index]

O 1.(10 runs) dot1g-ipdbase
O 3.(10 runs) ethip4-ip4scale2m

O 2.(10 runs) ethip4-ip4base

70

Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Throughput: 3n-hsw-xI710-64b-1t1 c-ip4routing—@ase—sca\e-d pdikipdr i}
14.0

12.0

10.0 e —a

8.00

6.00

Packet Throughput [Mpps]

4.00
2.00

0.00
1 2 3

Test Cases [Index]

(10 runs) dot1g-ip4base O 2.(10 runs) ethip4-ip4base

[
[ 3.(10 runs) ethip4-ip4scale2m

2.3. Packet Throughput 71



CSIT REPORT, Release rls2001

3n-tsh-x520

64b-1tlc-ip4routing-base-scale-ixgbe

Throughput: 3n-tsh-x520-64b-1t1c-ip4routi ng-bg’se-scale—ixgbe—nd r: - i}

7.00
6.00
EE——

5.00
)
(-5
Q.
=
=4.00
2 |
®
5 L]
2
=
=300
1]
X
(%]
S
o

2.00

1.00

L]
0.00
1 2 3 4 5
Test Cases [Index]
B 1.(05 runs) dot1g-ip4base B 2. (04 runs) ethip4-ip4base

[ 3.(05 runs) ethip4-ip4scale20k [ 4. (05 runs) ethip4-ip4scale200k
5. (04 runs) ethip4-ip4scale2m

72 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Throughput: 3n-tsh-x520-64b-1t1c-ip4routing—b%e-scale«ixgbe—pdr - i}
7.00

6.00

5.00

4. ==
00

Packet Throughput [Mpps]
&
o

2.00

1.00

0.00
1 2 3 4 5

Test Cases [Index]

[ 1. (05 runs) dot1g-ip4base [ 2. (04 runs) ethip4-ip4base
O 3.(05 runs) ethip4-ip4scale20k [ 4. (05 runs) ethip4-ip4scale200k
5. (04 runs) ethip4-ip4scale2m

2.3. Packet Throughput 73



CSIT REPORT, Release rls2001

64b-1t1c-features-ip4routing-base-ixgbe

Throughput: 3n-tsh-x520-64b-1t1 c-features-ip4f%utmg—base—ixgbe—mdf' i}

7.00

6.00

5.00

Packet Throughput [Mpps]

2.00

1.00

0.00

1 2 3 4

Test Cases [Index]
B 1. (04 runs) ethip4-ip4base
[ 2. (05 runs) ethip4udp-ip4base-iacl50sf-10kflows
[ 3.(05 runs) ethip4udp-ip4base-iacl50sl-10kflows
[ 4. (05 runs) ethip4udp-ip4base-oacl50sf-10kflows
5. (05 runs) ethip4udp-ip4base-oacl50s|-10kflows
[ 6.(05 runs) ethip4udp-ip4base-nat44

74

Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Throughput: 3n-tsh-x520-64b-1t1 c-features-ip4?%utmg-base—ixgbe—pdf' i}

7.00

6.00

5.00

»
=
S

Packet Throughput [Mpps]
&
o

2.00

1.00

0.00

1 2 3 4

Test Cases [Index]
B 1. (04 runs) ethip4-ip4base
[ 2. (05 runs) ethip4udp-ip4base-iacl50sf-10kflows
[ 3.(05 runs) ethip4udp-ip4base-iacl50sl-10kflows
[ 4.(05 runs) ethip4udp-ip4base-oacl50sf-10kflows
5. (05 runs) ethip4udp-ip4base-oacl50sl-10kflows
[ 6. (05 runs) ethip4udp-ip4base-nat44

2.3. Packet Throughput

75



CSIT REPORT, Release rls2001

2n-dnv-x553

64b-1tlc-ip4routing-base-scale-ixgbe

Throughput: 2n-dnv-x553-64b-1t1 c—ip4routing—k%se—scale—ixgbe-nd r- - i}

7.00

6.00

5.00

»
=
S

Packet Throughput [Mpps]
&
o

2.00

1.00

0.00

Test Cases [Index]

O 1. (10 runs) ethip4-ip4base

[ 2.(09 runs) ethip4-ip4scale20k

76

Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Throughput: 2n-dnv-x553-64b-1t1 c-ip4r0uting—k%se—scale-ixgbe—pdr - i}
7.00

6.00 A

500 ———

»
o
S

Packet Throughput [Mpps]
&
o

2.00

1.00

0.00

Test Cases [Index]

O 1.(10 runs) ethip4-ipdbase [E 2. (09 runs) ethip4-ip4scale20k

2.3. Packet Throughput 77



CSIT REPORT, Release rls2001

64b-1t1c-features-ip4routing-base-ixgbe

Throughput: 2n-dnv-x553-64b-1t1 c-features—ip@buting—base—ixgbe—ncﬂ' i}

7.00

6.00

5.00

»
o
S

Packet Throughput [Mpps]
&
o

2.00

1.00

0.00

1
Test Cases [Index]

B 1.(10 runs) ethip4-ip4base

78

Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Throughput: 2n-dnv-x553-64b-1t1 c-features—ipéﬁbutimg-base—ixgbe—poﬂ' i}

7.00

6.00

5.00

»
o
S

Packet Throughput [Mpps]
&
o

2.00

1.00

0.00

1
Test Cases [Index]

O 1.(10 runs) ethip4-ip4base

2.3. Packet Throughput

79



CSIT REPORT, Release rls2001

3n-dnv-x553

64b-1tlc-ip4routing-base-scale-ixgbe

Throughput: 3n-dnv-x553-64b-1t1 c—ip4routing—k%se—scale—ixgbe-nd r- - i}

7.00

6.00

5.00

»
=
S

Packet Throughput [Mpps]
&
o

2.00

1.00

0.00

Test Cases [Index]

O 1. (10 runs) ethip4-ip4base

[ 2. (10 runs) ethip4-ip4scale20k

80

Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Throughput: 3n-dnv-x553-64b-1t1 c-ip4r0uting—k%se—scale-ixgbe—pdr - i}
7.00

6.00 ————

5.00 m—

»
o
S

Packet Throughput [Mpps]
&
o

2.00

1.00

0.00

Test Cases [Index]

O 1.(10 runs) ethip4-ipdbase [E 2. (10 runs) ethip4-ip4scale20k

2.3. Packet Throughput 81



CSIT REPORT, Release rls2001

64b-1t1c-features-ip4routing-base-ixgbe

Throughput: 3n-dnv-x553-64b-1t1 c-features—ip@buting—base—ixgbe—ncﬂ' i}

7.00

6.00

5.00

»
o
S

Packet Throughput [Mpps]
&
o

2.00

1.00

0.00

1
Test Cases [Index]

B 1.(10 runs) ethip4-ip4base

82

Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Throughput: 3n-dnv-x553-64b-1t1 c-features—ipéﬁbutimg-base—ixgbe—poﬂ' i}

7.00

6.00

5.00

»
o
S

Packet Throughput [Mpps]
&
o

2.00

1.00

0.00

1
Test Cases [Index]

O 1.(10 runs) ethip4-ip4base

2.3. Packet Throughput

83



CSIT REPORT, Release rls2001

2.3.3 IPv6 Routing

Following sections include summary graphs of VPP Phy-to-Phy performance with IPvé Routed-
Forwarding, including NDR throughput (zero packet loss) and PDR throughput (<0.5% packet loss). Per-
formance is reported for VPP running in multiple configurations of VPP worker thread(s), a.k.a. VPP data
plane thread(s), and their physical CPU core(s) placement.

CSIT source code for the test cases used for plots can be found in CSIT git repository?°.

50 https:/git.fd.io/csit/tree/tests/vpp/perf/ip6?h=rls2001

84 Chapter 2. VPP Performance


https://git.fd.io/csit/tree/tests/vpp/perf/ip6?h=rls2001

CSIT REPORT, Release rls2001

3n-hsw-x1710

78b-1tlc-ip6érouting-base-scale-dpdk

2.3. Packet Throughput 85



CSIT REPORT, Release rls2001

86 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

3n-tsh-x520

78b-1t1c-ip6routing-base-scale-ixgbe

Throughput: 3n—tsh—x520—78b—1t1c—ip6routing-b@se-scale—ixgbe—ndr - i}

6.00
5.00
]
=

4.00
i
(-5
Q.
£
-
]
2
=
23.00
°
£ ==
=
-
1]
X
(%]
©
o

2.00

1.00

0.00

1 2 3 4 5
Test Cases [Index]
£ 1. (05 runs) dot1g-ip6base £ 2. (05 runs) ethip6-ip6base

[ 3.(05 runs) ethip6-ipéscale20k [ 4. (05 runs) ethip6-ip6scale200k
5. (05 runs) ethip6-ip6scale2m

2.3. Packet Throughput 87



CSIT REPORT, Release rls2001

Throughput: 3n-tsh-x520-78b-1t1c-ip6routing—b%e-scale«ixgbe—pdr - i}

6.00

5.00

==
| m——

4.00
o
o
o
=)
5
[
-"‘:"3 00
E : _——
£
-
)
X
=)
T
(-9

2.00 —

1.00

0.00

1 2 3 4 5
Test Cases [Index]
[ 1. (05 runs) dot1g-ip6base [ 2. (05 runs) ethip6-ip6base

[ 3.(05 runs) ethip6-ipéscale20k [ 4. (05 runs) ethip6-ip6scale200k
5. (05 runs) ethip6-ip6scale2m

88 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

2n-dnv-x553

78b-1t1c-ip6routing-base-scale-ixgbe

Throughput: 2n-dnv-x553-78b-1t1 c—ip6routing—k%se—scale—ixgbe-nd r- - i}
7.00

6.00

5.00

»
=
S

Packet Throughput [Mpps]
&
o

2.00

1.00

0.00

Test Cases [Index]

[ 1. (10 runs) ethip6-ipébase [ 2. (10 runs) ethip6-ip6scale20k

2.3. Packet Throughput 89



CSIT REPORT, Release rls2001

Throughput: 2n-dnv-x553-78b-1t1 c-ip6routing—t%se—scale-ixgbe—pdr - i}
7.00

6.00

5.00

4.00

3.00

Packet Throughput [Mpps]

2.00

1.00

0.00

Test Cases [Index]

O 1. (10 runs) ethip6-ipébase [ 2. (10 runs) ethip6-ip6scale20k

90 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

3n-dnv-x553

78b-1t1c-ip6routing-base-scale-ixgbe

Throughput: 3n-dnv-x553-78b-1t1 c—ip6routing—k%se—scale—ixgbe-nd r- - i}
7.00

6.00

5.00 —_—

»
=
S

Packet Throughput [Mpps]

3.00
——
2.00
1.00
0.00 ] 5

Test Cases [Index]

[ 1. (10 runs) ethip6-ipébase [ 2. (10 runs) ethip6-ip6scale20k

2.3. Packet Throughput 91



CSIT REPORT, Release rls2001

Throughput: 3n-dnv-x553-78b-1t1 c-ip6routing—t%se—scale-ixgbe—pdr - i}
7.00

6.00

5.00 —_—

4.00

3.00

Packet Throughput [Mpps]

2.00

1.00

0.00

Test Cases [Index]

O 1. (10 runs) ethip6-ipébase [ 2. (10 runs) ethip6-ip6scale20k

92 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

2.3.4 SRvé6 Routing

Following sections include summary graphs of VPP Phy-to-Phy performance with SRvé, including NDR
throughput (zero packet loss) and PDR throughput (<0.5% packet loss). Performance is reported for VPP
running in multiple configurations of VPP worker thread(s), a.k.a. VPP data plane thread(s), and their
physical CPU core(s) placement.

CSIT source code for the test cases used for plots can be found in CSIT git repository>!.

51 https:/git.fd.io/csit/tree/tests/vpp/perf/srv6?h=rls2001

2.3. Packet Throughput 93


https://git.fd.io/csit/tree/tests/vpp/perf/srv6?h=rls2001

CSIT REPORT, Release rls2001

3n-hsw-x1710

78b-1tlc-srvé6-ip6routing-base-dpdk

Throughput: 3n-hsw-xI1710-78b-1t1 c—srv6—ip6rotﬁ§ng-base—dpdk-ndr - i}

9.00

8.00

7.00

> w o
= =} =}
S s} S

Packet Throughput [Mpps]

w
=}
S

0.00

1 2 3 4 5

Test Cases [Index]
1. (10 runs) ethip6ip6-ip6base-srvéencisid
E 2. (10 runs) ethip6srhip6-ip6base-srv6enc2sids
[ 3.(10 runs) ethip6srhip6-ip6base-srv6enc2sids-nodecaps
[ 4. (10 runs) ethip6srhip6-ip6base-srv6proxy-dyn
5. (10 runs) ethip6srhip6-ip6base-srv6proxy-masq
[ 6.(10 runs) ethip6srhip6-ip6base-srvéproxy-stat

94

Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Throughput: 3n-hsw-xl710-78b-1t1c-srv6-ip6r0Lﬁ§ng—base-dpdk—pdr - i}
9.00

8.00

7.00

» » o
o o o
o o o

Packet Throughput [Mpps]

w
o
S

2.00

1.00

0.00
1 2 3 4 5 6

Test Cases [Index]
£ 1. (10 runs) ethip6ip6-ip6base-srv6encisid
[ 2. (10 runs) ethip6srhip6-ip6base-srv6enc2sids
[ 3.(10 runs) ethip6srhip6-ip6base-srveenc2sids-nodecaps
[ 4.(10 runs) ethip6srhip6-ip6base-srvéproxy-dyn
5. (10 runs) ethip6srhip6-ip6base-srvéproxy-masq
[ 6. (10 runs) ethip6srhip6-ip6base-srv6proxy-stat

2.3. Packet Throughput 95



CSIT REPORT, Release rls2001

3n-tsh-x520

78b-1tlc-srv6-ip6routing-base-ixgbe

Throughput: 3n-tsh-x520-78b-1t1 c—srv6—ip6routﬂg—base—ixgbe—ndr

5.00

4.00

2.00

Packet Throughput [Mpps]

1.00

0.00

1 2 3 4 5

Test Cases [Index]
1. (05 runs) ethip6ip6-ip6base-srvéencisid
[ 2. (05 runs) ethip6srhip6-ip6base-srv6enc2sids
£ 3.(05 runs) ethip6srhip6-ip6base-srv6enc2sids-nodecaps
[ 4. (05 runs) ethip6srhip6-ip6base-srv6proxy-dyn
5. (05 runs) ethip6srhip6-ip6base-srv6proxy-masq
[ 6. (05 runs) ethip6srhip6-ip6base-srvéproxy-stat

96

Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Throughput: 3n-tsh-x520-78b-1t1 c-srv6-ip6routﬂg—base—ixgbe—pdr

5.00

4.00

2.00

Packet Throughput [Mpps]

1.00

0.00

1 2 3 4 5

Test Cases [Index]
£ 1. (05 runs) ethip6ip6-ip6base-srv6encisid
[ 2. (05 runs) ethip6srhip6-ip6base-srv6enc2sids
[ 3.(05 runs) ethip6srhip6-ip6base-srv6enc2sids-nodecaps
[ 4.(05 runs) ethip6srhip6-ip6base-srvéproxy-dyn
5. (05 runs) ethip6srhip6-ip6base-srvéproxy-masq
[ 6. (05 runs) ethip6srhip6-ip6base-srv6proxy-stat

2.3. Packet Throughput

97



CSIT REPORT, Release rls2001

2.3.5 IPv4 Tunnels

Following sections include summary graphs of VPP Phy-to-Phy performance with IPv4 Overlay Tunnels,
including NDR throughput (zero packet loss) and PDR throughput (<0.5% packet loss). Performance is re-
ported for VPP running in multiple configurations of VPP worker thread(s), a.k.a. VPP data plane thread(s),
and their physical CPU core(s) placement.

CSIT source code for the test cases used for plots can be found in CSIT git repository?2.

52 https://git.fd.io/csit/tree/tests/vpp/perf/ip4_tunnels?h=rls2001

98 Chapter 2. VPP Performance


https://git.fd.io/csit/tree/tests/vpp/perf/ip4_tunnels?h=rls2001

CSIT REPORT, Release rls2001

3n-hsw-x1710

64b-1tlc-ip4tunnel-base-dpdk

Throughput: 3n—hsw—xl710—64b—1t1c—ip4tunne|—k%se-dpdk—ndr - i}
10.0

8.00

o
o
s)

Packet Throughput [Mpps]
5
o

2.00

0.00

Test Cases [Index]

O 1. (10 runs) ethip4vxlan-I2xcbase
E 2. (10 runs) ethip4vxlan-I2bdbasemaclrn

2.3. Packet Throughput 99



CSIT REPORT, Release rls2001

Throughput: 3n-hsw-xI710-64b-1t1 c-ip4tunne|—t%se—d pdk=pdr

10.0

8.00

6.00

Packet Throughput [Mpps]

2.00

0.00

[m]
=]

1.
2.

Test Cases [Index]

(10 runs) ethip4vxlan-I2xcbase
(10 runs) ethip4vxlan-I2bdbasemacirn

100

Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

3n-tsh-x520

64b-1tlc-ip4tunnel-base-scale-ixghe

Throughput: 3n-tsh-x520-64b-1t1 c—ip4tunnel—ba‘§'e—sca lelixghbe-Adr © i}
6.00

5.00

«

w
o
=3 —_
2
2
=
o
= .
300
o
E ==
=
-
Q
4
O
©
o

2.00

1.00

0.00

1 2 3 4

Test Cases [Index]

O 1. (05 runs) ethip4vxlan-I2xcbase

O 2. (04 runs) ethip4vxlan-I2bdbasemaclrn

[ 3.(05 runs) dot1g--ethip4vxlan-I2bdscale112bd1vlanivxlan

[ 4.(05 runs) dot1g--ethip4vxlan-12bdscale10012bd100vian100vxlan

2.3. Packet Throughput 101



CSIT REPORT, Release rls2001

Throughput:3n-tsh-x520-64b-1t1c-ip4tunne#—ba@e—scale—\'xgbe—pdr - i}
6.00

5.00

4.00

3.00

Packet Throughput [Mpps]

2.00

1.00

0.00
1 2 3 4

Test Cases [Index]

B 1.(05 runs) ethipdvxlan-I2xcbase

[ 2. (04 runs) ethip4vxlan-I2bdbasemacirn

[ 3.(05 runs) dot1qg--ethipdvxlan-I2bdscale112bd1vlan1vxlan

[ 4. (05 runs) dot1g--ethip4vxlan-I2bdscale10012bd 100vian100vxlan

102 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

3n-dnv-x553

64b-1tlc-ip4tunnel-base-scale-ixghe

Throughput: 3n—dnv—x553—64b—1t1c—ip4tunnel-b%e—scale—ixgbe—ndr - i}
6.00

5.00

4.00

3.00

Packet Throughput [Mpps]

2.00

1.00

0.00

Test Cases [Index]

I 1.(08 runs) ethipdvxlan-I2xcbase
E 2. (10 runs) ethip4vxlan-I2bdbasemaclrn

2.3. Packet Throughput 103



CSIT REPORT, Release rls2001

Throughput: 3n-dnv-x553-64b-1t1 c-ip4tunnel»b%e«scale—ixgbe—pdr - i}
6.00

5.00

4.00

3.00

Packet Throughput [Mpps]

2.00

1.00

0.00

Test Cases [Index]

(08 runs) ethip4vxlan-I2xcbase

3 1.
[ 2. (10 runs) ethip4vxlan-I2bdbasemacirn

104 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

2.3.6 KVM VMs vhost-user

Following sections include summary graphs of VPP Phy-to-VM(s)-to-Phy performance with VM virtio
and VPP vhost-user virtual interfaces, including NDR throughput (zero packet loss) and PDR throughput
(<0.5% packet loss). Performance is reported for VPP running in multiple configurations of VPP worker
thread(s), a.k.a. VPP data plane thread(s), and their physical CPU core(s) placement.

CSIT source code for the test cases used for plots can be found in CSIT git repository?3.

53 https:/git.fd.io/csit/tree/tests/vpp/perf/vm_vhost?h=rls2001

2.3. Packet Throughput 105


https://git.fd.io/csit/tree/tests/vpp/perf/vm_vhost?h=rls2001

CSIT REPORT, Release rls2001

3n-hsw-x1710

64b-1tl1c-vhost-base-dpdk-testpmd

Throughput: 3n-hsw-xI1710-64b-1t1 c—vhost—base%pd k-Ael

7.00

6.00

5.00

»
o
S

Packet Throughput [Mpps]
&
o

2.00

1.00

0.00

1 2 3

Test Cases [Index]

I 1. (10 runs) eth-I2xcbase-eth-2vhostvr1024-1vm

O 2.(10 runs) dot1g-I2bdbasemaclrn-eth-2vhostvr1024-1vm
[ 3.(10 runs) eth-I2bdbasemaclrn-eth-2vhostvr1024-1vm
[ 4.(10 runs) ethip4-ip4base-eth-2vhostvr1024-1vm

106

Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Throughput: 3n-hsw-xI710-64b-1t1 c-vhost»base%pd k-pdr

7.00

6.00

5.00

>
=
S

Packet Throughput [Mpps]
&
o

2.00

1.00

0.00

1 2 3

Test Cases [Index]

1. (10 runs) eth-12xcbase-eth-2vhostvr1024-1vm

[ 2. (10 runs) dot1g-I2bdbasemaclrn-eth-2vhostvr1024-1vm
O 3.(10 runs) eth-I2bdbasemaclrn-eth-2vhostvr1024-1vm
[ 4. (10 runs) ethip4-ip4base-eth-2vhostvr1024-1vm

2.3. Packet Throughput

107



CSIT REPORT, Release rls2001

64b-1t1c-vhost-base-dpdk-vpp

Throughput: 3n-hsw-xI710-64b-1t1 c-vhost»base%pdk—vpp—ndr - i}
4.00

3.00

N
%
=]

Packet Throughput [Mpps]
o
o

|
|

1.00
o
0.500
0.00
1 2
Test Cases [Index]
1. (09 runs) eth-12xcbase-eth-2vhostvr1024-1vm-vppl2xc
[ 2.(10 runs) ethip4-ip4base-eth-2vhostvr1024-1vm-vppip4

108 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Throughput: 3n-hsw-xI710-64b-1t1 c-vhost»base%pdk—vpp-pdr - i}
6.00

5.00

4.00

3.00

Packet Throughput [Mpps]

2.00

1.00

0.00

Test Cases [Index]

(09 runs) eth-12xcbase-eth-2vhostvr1024-1vm-vppl2xc

[
£ 2.(10 runs) ethip4-ip4base-eth-2vhostvr1024-1vm-vppip4

2.3. Packet Throughput 109



CSIT REPORT, Release rls2001

3n-tsh-x520

64b-1tl1c-vhost-base-ixgbe-vppl2xc

Throughput: 3n-tsh-x520-64b-1t1 c—vhost—baSe—i%be-vppIZXC—ndr - i}

3.00

2.50
2,00
a
o
=4
5
o
i)
1,50
2
= e
]
4 —
s
& 1.00

€L
0.500
0.00
1 2 3 4

Test Cases [Index]

1. (05 runs) dot1g-2xcbase-eth-2vhostvr1024-1vm-vppl2xc

O 2.(05 runs) eth-12xcbase-eth-2vhostvr1024-1vm-vppl2xc

[ 3.(05 runs) dot1g-I2bdbasemaclrn-eth-2vhostvr1024-1vm-vppl2xc
[ 4. (04 runs) eth-12bdbasemaclrn-eth-2vhostvr1024-1vm-vppl2xc

110

Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Throughput: 3n-tsh-x520-64b-1t1 c-vhost-base—i%be—vpplec—pdr - i}
4.00

3.00

2.50

Packet Throughput [Mpps]

2.00 |
— t
150 — :
1.00
0.500
0.00
1 2 3 4

Test Cases [Index]

£ 1. (05 runs) dot1q-I2xcbase-eth-2vhostvr1024-1vm-vppl2xc

O 2. (05 runs) eth-12xcbase-eth-2vhostvr1024-1vm-vppl2xc

[ 3.(05 runs) dot1q-I12bdbasemacirn-eth-2vhostvr1024-1vm-vppl2xc
[ 4. (04 runs) eth-I2bdbasemaclrn-eth-2vhostvr1024-1vm-vppl2xc

2.3. Packet Throughput 111



CSIT REPORT, Release rls2001

2.3.7 LXC/DRC Container Memif

Following sections include summary graphs of VPP Phy-to-Phy performance with Container memif Con-
nections, including NDR throughput (zero packet loss) and PDR throughput (<0.5% packet loss). Perfor-
mance is reported for VPP running in multiple configurations of VPP worker thread(s), a.k.a. VPP data
plane thread(s), and their physical CPU core(s) placement.

CSIT source code for the test cases used for plots can be found in CSIT git repository?*.

54 https:/git.fd.io/csit/tree/tests/vpp/perf/container_memif?h=rls2001

112 Chapter 2. VPP Performance


https://git.fd.io/csit/tree/tests/vpp/perf/container_memif?h=rls2001

CSIT REPORT, Release rls2001

3n-tsh-x520

64b-1t1c-memif-base-ixgbe

Throughput: 3n-tsh-x520-64b-1t1 c—memif—base—@egbe-ndr

5.00

4.00

w
=}
S

2.00

Packet Throughput [Mpps]

1.00

0.00

= B

1 2 3 4

Test Cases [Index]

[ 1. (05 runs) eth-I2xcbase-eth-2memif-1Ixc
I 2.(05 runs) eth-12xcbase-eth-2memif-1dcr
[ 3.(05 runs) dot1q-I2bdbasemaclrn-eth-2memif-1dcr
[ 4. (05 runs) eth-I2bdbasemaclrn-eth-2memif-1Ixc
5. (05 runs) ethip4-ip4base-eth-2memif-1dcr

2.3. Packet Throughput

113



CSIT REPORT, Release rls2001

Throughput: 3n-tsh-x520-64b-1t1 c-memif—base—@egbe—pdr

5.00

4.00

2.00

Packet Throughput [Mpps]

1.00

0.00

1 2 3 4

Test Cases [Index]

O 1.(05 runs) eth-12xcbase-eth-2memif-1Ixc
O 2.(05 runs) eth-12xcbase-eth-2memif-1dcr
[ 3.(05 runs) dot1g-I12bdbasemaclrn-eth-2memif-1dcr
[ 4. (05 runs) eth-I2bdbasemaclrn-eth-2memif-1Ixc
5. (05 runs) ethip4-ip4base-eth-2memif-1dcr

114

Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

2.3.8 IPSec IPv4 Routing

Following sections include summary graphs of VPP Phy-to-Phy performance with IPSec encryption used
in combination with IPv4 routed-forwarding, including NDR throughput (zero packet loss) and PDR
throughput (<0.5% packet loss). VPP IPSec encryption is accelerated using DPDK cryptodev library driv-
ing Intel Quick Assist (QAT) crypto PCle hardware cards. Performance is reported for VPP running in
multiple configurations of VPP worker thread(s), a.k.a. VPP data plane thread(s), and their physical CPU
core(s) placement.

CSIT source code for the test cases used for plots can be found in CSIT git repository>°.

55 https:/git.fd.io/csit/tree/tests/vpp/perf/crypto?h=rls2001

2.3. Packet Throughput 115


https://git.fd.io/csit/tree/tests/vpp/perf/crypto?h=rls2001

CSIT REPORT, Release rls2001

3n-hsw-x1710

imix-1t1c-ipsec-ip4routing-base-scale-sw-dpdk

Throughput: 3n-hsw-xI710-imix-1t1c-ipsec-ifAr&tifig-base-stale-sw-dBiend

3.00

2.50

N
o
S

1.50

Packet Throughput [Mpps]

N
o
S

0.500

0.00

1 2 3 4 5 6

Test Cases [Index]
O 1. (10 runs) ethipdipsec4tnlsw-ip4base-int-aes256gcm
£ 2. (10 runs) ethipdipsec4tnlsw-ip4base-int-aes128cbc-hmac512sha
O 3.(10 runs) ethip4ipsec1000tnisw-ip4base-int-aes256gcm
[ 4.(10 runs) ethip4ipsec1000tnisw-ip4base-int-aes128cbc-hmac512sha
5. (10 runs) ethip4ipsec10000tnisw-ip4base-int-aes256gcm
[ 6.(10 runs) ethip4ipsec10000tnisw-ip4base-int-aes128cbc-hmac512sha

116

Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Throughput: 3n-hsw-xI710-imix-1t1 c-ipsec—ip4rc%ting—base»scaIe—svv—dﬂ'dk—ptm

3.00

2.50

N
o
S

1.50

Packet Throughput [Mpps]

N
o
s)

0.500

0.00

1 2 3 4 5 6

Test Cases [Index]
O 1. (10 runs) ethipdipsec4tnlsw-ip4base-int-aes256gcm
[ 2. (10 runs) ethipdipsec4tnlsw-ip4base-int-aes128cbc-hmac512sha
[ 3. (10 runs) ethip4ipsec1000tnisw-ip4base-int-aes256gcm
[ 4.(10 runs) ethip4ipsec1000tnisw-ip4base-int-aes128cbc-hmac512sha
5. (10 runs) ethip4ipsec10000tnisw-ip4base-int-aes256gcm
[ 6. (10 runs) ethip4ipsec10000tnisw-ip4base-int-aes128cbc-hmac512sha

2.3. Packet Throughput

117



CSIT REPORT, Release rls2001

imix-1tlc-ipsec-ip4routing-base-scale-hw-dpdk

Throughput: 3n-hsw-xI710-imix-1t1 c-ipsec—ip4rd%ting—base»scaIe—hw—oﬂ'dk»nm

4.00

3.50

3.00

N
0
o

2.00

Packet Throughput [Mpps]

1.50

1.00

0.500

0.00

1 2 3 4

Test Cases [Index]

£ 1.(10 runs) ethipdipsectnlhw-ip4base-int-aes256gcm

[ 2. (10 runs) ethipdipsecTtnlhw-ip4base-int-aes128cbc-hmac512sha

[ 3.(10 runs) ethip4ipsec1000tnlhw-ip4base-int-aes256gcm

[ 4. (10 runs) ethip4ipsec1000tnlhw-ip4base-int-aes128cbc-hmac512sha

118

Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Throughput: 3n-hsw-xI710-imix-1t1 c-ipsec—ip4rc%ting—base»scaIe—hw—oﬂdk»pm

4.00

3.00

2.50

2.00

Packet Throughput [Mpps]
7
o

0.500

0.00

1 2 3 4

Test Cases [Index]

O 1. (10 runs) ethipdipsecttnlhw-ip4base-int-aes256gcm
[ 2. (10 runs) ethipdipsecTtnlhw-ip4base-int-aes128cbc-hmac512sha
[ 3.(10 runs) ethipdipsec4tnlsw-ip4base-int-aes256gcm
[ 4.(10 runs) ethipdipsec4tnlsw-ip4base-int-aes128cbc-hmac512sha

2.3. Packet Throughput

119



CSIT REPORT, Release rls2001

3n-tsh-x520

imix-1t1c-ipsec-ip4routing-base-scale-sw-ixgbe

Throughput: 3n-tsh-x520-imix-1t1c-ipsec-ip4+o Lﬁ\ng—base—scale-sw—ixgﬂe—nd i}

2.00

1.50

1.00

Packet Throughput [Mpps]

0.500

0.00

| .
@ 2.
@ 3.

1 2
Test Cases [Index]

(05 runs) ethip4ipsec4tnlsw-ip4base-int-aes256gcm
(05 runs) ethip4ipsec1000tnisw-ip4base-int-aes256gcm
(05 runs) ethip4ipsec10000tnisw-ip4base-int-aes256gcm

120

Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Throughput: 3n-tsh-x520-imix-1t1 c-ipsec-ip4roLﬁ\»mg—base-scale—svv—i><g15'e—polrm
2.00

1.50

1.00

Packet Throughput [Mpps]

0.500

0.00
1 2 3

Test Cases [Index]

£ 1.(05 runs) ethipdipsec4tnlsw-ip4base-int-aes256gcm
O 2. (05 runs) ethip4ipsec1000tnisw-ip4base-int-aes256gcm
[ 3.(05 runs) ethip4ipsec10000tnIsw-ip4base-int-aes256gcm

2.3. Packet Throughput 121



CSIT REPORT, Release rls2001

3n-dnv-x553

imix-1t1c-ipsec-ip4routing-base-scale-sw-ixgbe

Throughput: 3n-dnv-x553-imix-1t1c-ipsec-i p4ro§¥i ng-base—scale—sw-ix@e—ndm
2.00

1.50

1.00

Packet Throughput [Mpps]

0.500

0.00
1 2 3 4

Test Cases [Index]

O 1. (10 runs) ethipdipsec4tnlsw-ip4base-int-aes256gcm

E 2. (10 runs) ethipdipsec4tnlsw-ip4base-int-aes128cbc-hmac512sha

[ 3.(09 runs) ethip4ipsec1000tnisw-ip4base-int-aes256gcm

[ 4.(10 runs) ethip4ipsec1000tnisw-ip4base-int-aes128cbc-hmac512sha

122 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Throughput: 3n-dnv-x553-imix-1t1 c-ipsec-ip4ro§¥ingfbase-scale—sw—ix@e—pdm

2.00

1.50

1.00

Packet Throughput [Mpps]

0.500

0.00

1 2 3 4

Test Cases [Index]

O 1. (10 runs) ethipdipsec4tnlsw-ip4base-int-aes256gcm

[ 2. (10 runs) ethipdipsec4tnlsw-ip4base-int-aes128cbc-hmac512sha

[ 3.(09 runs) ethip4ipsec1000tnisw-ip4base-int-aes256gcm

[ 4.(10 runs) ethip4ipsec1000tnisw-ip4base-int-aes128cbc-hmac512sha

2.3. Packet Throughput

123



CSIT REPORT, Release rls2001

2.4 Speedup Multi-Core

Speedup Multi-Core throughput graphs are generated by multiple executions of the same performance
tests across physical testbeds hosted LF FD.io labs: 3n-hsw, 2n-skx, 3n-skx, 2n-clx, 3n-tsh, 2n-dnv, 3n-
dnv. Grouped bars illustrate the 64B/78B packet throughput speedup ratio for 2- and 4-core multi-
threaded VPP configurations relative to 1-core configurations.

Additional information about graph data:

1. Graph Title: describes tested packet path, testbed topology, processor model, NIC model, packet
size used by data plane workers and indication of VPP DUT configuration.

. X-axis Labels: number of cores.
. Y-axis Labels: measured Packets Per Second [pps] throughput values.

. Graph Legend: lists CSIT test suites executed to generate graphed test results.

ua A O N

. Hover Information: lists number of runs executed, specific test substring, mean value of the mea-
sured packet throughput, calculated perfect throughput value, difference between measured and
perfect values and relative speedup value.

Note: Test results have been generated by FD.io test executor vpp performance job 2n-skx>®, FD.io test
executor vpp performance job 3n-skx>’, FD.io test executor vpp performance job 2n-cIx®8, FD.io test
executor vpp performance job 3n-hsw>?, FD.io test executor vpp performance job 3n-tsh®®, FD.io test
executor vpp performance job 2n-dnv®! and FD.io test executor vpp performance job 3n-dnv®? with RF
result files csit-vpp-perf-2001-*.zip archived here. Required per test case data set size is 10, but for VPP
tests the actual size varies per test case and is <=10.

56 https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-2n-skx
57 https://jenkins.fd.io/view/csit/job/csit-vpp- perf-verify-2001-3n-skx
58 https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-2n-clx
59 https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-3n-hsw
60 https:/jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-3n-tsh
61 https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-2n-dnv
62 https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-3n-dnv

124 Chapter 2. VPP Performance


https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-2n-skx
https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-3n-skx
https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-3n-skx
https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-2n-clx
https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-3n-hsw
https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-3n-hsw
https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-3n-tsh
https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-2n-dnv
https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-2n-dnv
https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-3n-dnv

CSIT REPORT, Release rls2001

2.4.1 L2 Ethernet Switching

Following sections include Throughput Speedup Analysis for VPP multi- core multi-thread configurations
with no Hyper-Threading, specifically for tested 2t2c (2threads, 2cores) and 4t4c scenarios. 1t1c through-
put results are used as a reference for reported speedup ratio. Input data used for the graphs comes from
Phy-to-Phy 64B performance tests with VPP L2 Ethernet switching, including NDR throughput (zero
packet loss) and PDR throughput (<0.5% packet loss).

CSIT source code for the test cases used for plots can be found in CSIT git repository®3.

63 https://git.fd.io/csit/tree/tests/vpp/perf/I2?h=rls2001

2.4. Speedup Multi-Core 125


https://git.fd.io/csit/tree/tests/vpp/perf/l2?h=rls2001

CSIT REPORT, Release rls2001

3n-hsw-x1710

64b-12switching-base-scale-dpdk

126 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

2.4. Speedup Multi-Core 127



CSIT REPORT, Release rls2001

3n-tsh-x520

64b-12switching-base-ixgbe

Speedup Multi-core: 3n—tsh—x520—64b—|25\)§?~tching—base—ixgbe—ndr - i}

25.00 NIC: 24.46Mpps

20.00

15.00

10.00

Packet Throughput [Mpps]

5.000
0.000
1 2 3 4
Number of Cores [Qty]
— Perfect ~ Measured =~ Limit
dot1g-I2xcbase —8— eth-12xcbase

—o— dot1g-I2bdbasemaclrn —®— eth-I2bdbasemaclirn

128 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

25.00

20.00

15.00

10.00

Packet Throughput [Mpps]

5.000

0.000

Speedup Multi-core: 3n-tsh-x520-64b—|25\ﬂtching—base-ixgbe—pdr -
NIC: 24.46Mpps
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -

'
'
7
”
>
7
. ”
g
7 -
7 -
. - -7
7 2 ”
- - Zd
s -
-, < -
- - P
e - - - - -
' - -
o7z 2
I - z7 -7
- z -
AL —o
-, zZ
[ -~
7 -
z
P
1 2 3 4
Number of Cores [Qty]
— T Perfect ~ Measured ' Limit
dot1g-12xcbase —8— eth-2xcbase

—o— dot1g-I2bdbasemaclrn —®— eth-I2bdbasemacirn

2.4. Speedup Multi-Core

129



CSIT REPORT, Release rls2001

64b-12switching-base-scale-ixgbe

Speedup Multi-core: 3n-tsh-x520-64b—|25\ﬂtchimg—base—sca\e—ixgbe—moﬂ' i}

25.00 NIC: 24.46Mpps
s
e
-
s
e
s
' .
20.00 - -
s
= - -7
7
g T
' e
= . - -
el // ~ - -
3 15.00 > -7 -
o d - - -
< P - -
%D - - -7 .
o A7 Phd PRSP
£ - P _ - : -
Ll -, - - - PR
+ 10.00 - - - -
7] - - - -
4 - - - -
] - - - -7
g - - “a 44_____—7.

- P = -
",//.-— B
5.000 — - '

0.000
2 3 4
Number of Cores [Qty]
— Perfect ~ Measured ~ Limit
eth-I2patch —8— eth-12xcbase
—8— eth-I2bdbasemacirn —8— eth-I2bdscale10kmacirn
—8— eth-I2bdscale100kmaclrn eth-12bdscaletmmacirn

130 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Speedup Multi-core: 3n-tsh-x520-64b—|25\ﬂtching—base-sca\e—ixgbe—poﬂ' i}

NIC: 24.46Mpps

25.00

20.00

15.00

10.00

Packet Throughput [Mpps]

5.000
0.000
1 2 3
Number of Cores [Qty]
- Perfect ~ Measured ~ ' Limit
eth-I2patch —8— eth-12xcbase

—8— eth-I2bdbasemacirn
—8— eth-I2bdscale100kmaclrn

—8— eth-I2bdscale10kmacirn
eth-12bdscaletmmacirn

2.4. Speedup Multi-Core

131



CSIT REPORT, Release rls2001

64b-features-I12switching-base-ixgbe

Speedup Multi-core: 3n-tsh-x520-64b—fea@res—!stvitching»base»ixgbe‘—hdr i}

25.00

20.00

15.00

10.00

Packet Throughput [Mpps]

5.000

0.000

NIC: 24.46Mpps

1 2 3
Number of Cores [Qty]
— — Perfect — Measured "°° Limit

eth-I2bdbasemacirn

—8— eth-12bdbasemaclirn-iacl50sf-10kflows

—8— eth-I2bdbasemaclrn-iacl50sl-10kflows

—0— eth-I2bdbasemaclrn-oacl50sf-10kflows

—8— eth-I2bdbasemaclirn-oacl50sl-10kflows
eth-12bdbasemaclrn-macip-iacl50sl-10kflows

132

Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Speedup Multi-core: 3n-tsh-x520-64b—fea@res—!stvitchimg»base—ixgbe%dr i}

25.00

20.00

15.00

10.00

Packet Throughput [Mpps]

5.000

0.000

NIC: 24.46Mpps

1 2 3 4
Number of Cores [Qty]
— — Perfect — Measured "°° Limit

eth-12bdbasemacirn

—8— eth-I2bdbasemaclrn-iacl50sf-10kflows

—8— eth-I2bdbasemaclrn-iacl50sl-10kflows

—0— eth-I2bdbasemaclrn-oacl50sf-10kflows

—8— eth-I2bdbasemaclirn-oacl50sl-10kflows
eth-12bdbasemaclrn-macip-iacl50sl-10kflows

2.4. Speedup Multi-Core

133



CSIT REPORT, Release rls2001

2n-dnv-x553

64b-12switching-base-ixgbe

Speedup Multi-core: 2n—dnv—x553—64b-125@itching-base—ixgbe-nd r-tsa*™ i}

25.00

20.00

15.00

Packet Throughput [Mpps]

10.00

5.000

0.000

1 2 3 4
Number of Cores [Qty]
— ~ Perfect ~ Measured = Limit

eth-12xcbase —®— eth-12bdbasemacirn

134 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Speedup Multi-core: 2n-dnv-x553-64b—125@itching—base»ixgbe»pd r-tsa*™ i}

25.00

20.00

15.00

Packet Throughput [Mpps]

10.00

5.000
0.000
1 2 3 4
Number of Cores [Qty]
~ Perfect ~ Measured ' Limit

eth-I2xcbase —@— eth-I2bdbasemacirn

2.4. Speedup Multi-Core 135



CSIT REPORT, Release rls2001

64b-12switching-base-scale-ixgbe

Speedup Multi-core: 2n-dnv-x553-64b—125@itching—base»scale«ixgbe—n&—tsa i}

25.00

N
o
o
S

Packet Throughput [Mpps]
o
o
o

N
o
o
S

5.000
0.000
1 2 3
Number of Cores [Qty]
— ~ Perfect ~ Measured '~ Limit
eth-12patch —8— eth-2xcbase

—8— eth-I2bdbasemacirn

—0— eth-12bdscale10kmaclirn

136

Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Speedup Multi-core: 2n-dnv-x553-64b—|25@itching—base»scale«ixgbe—pa—tsa i}

25.00

20.00

15.00

Packet Throughput [Mpps]

10.00

5.000

0.000

1 2 3
Number of Cores [Qty]
— T Perfect ~ Measured ' Limit
eth-I2patch —8— eth-2xcbase

—8— eth-I2bdbasemacirn —8— eth-I2bdscale10kmaclrn

2.4. Speedup Multi-Core

137



CSIT REPORT, Release rls2001

3n-dnv-x553

64b-12switching-base-ixgbe

Speedup Multi-core: 3n—dnv—x553—64b-125@itching-base—ixgbe-nd r-tsa*™ i}

25.00

20.00

15.00

Packet Throughput [Mpps]

10.00

5.000

0.000

1 2 3 4
Number of Cores [Qty]
— ~ Perfect ~ Measured = Limit

eth-12xcbase —®— eth-12bdbasemacirn

138 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Speedup Multi-core: 3n-dnv-x553-64b—125@itching—base»ixgbe»pd r-tsa*™ i}

25.00

20.00

15.00

Packet Throughput [Mpps]

10.00

5.000
0.000
1 2 3 4
Number of Cores [Qty]
~ Perfect ~ Measured ' Limit

eth-I2xcbase —@— eth-I2bdbasemacirn

2.4. Speedup Multi-Core 139



CSIT REPORT, Release rls2001

64b-12switching-base-scale-ixgbe

Speedup Multi-core: 3n-dnv-x553-64b—125@itching—base»scale«ixgbe—n&—tsa i}

25.00

N
o
o
S

Packet Throughput [Mpps]
o
o
o

N
o
o
S

5.000
0.000
1 2 3
Number of Cores [Qty]
— ~ Perfect ~ Measured '~ Limit
eth-12patch —8— eth-2xcbase

—8— eth-I2bdbasemacirn

—0— eth-12bdscale10kmaclirn

140

Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Speedup Multi-core: 3n-dnv-x553-64b—|25@itching—base»scale«ixgbe—pa—tsa i}

25.00

20.00

15.00

Packet Throughput [Mpps]

10.00

5.000

0.000

1 2 3
Number of Cores [Qty]
— T Perfect ~ Measured ' Limit
eth-I2patch —8— eth-2xcbase

—8— eth-I2bdbasemacirn —8— eth-I2bdscale10kmaclrn

2.4. Speedup Multi-Core

141



CSIT REPORT, Release rls2001

64b-features-I12switching-base-ixgbe

Speedup Multi-core: 3n-dnv-x553-64b—fea®res~|25vv'\tch\ngfbase—ixgbé!ndr—tm

25.00

20.00

15.00

Packet Throughput [Mpps]

N
o
o
S

5.000

0.000

S S
1 2 3
Number of Cores [Qty]
— T Perfect ~ Measured ' Limit

eth-I2xcbase

142

Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Speedup Multi-core: 3n-dnv-x553-64b—fea%res~|25vv\tch\ngfbase—ixgb@pdr—tm

25.00

20.00

15.00

Packet Throughput [Mpps]

10.00

5.000
0.000
1 2 3 4
Number of Cores [Qty]
~ Perfect ~ Measured ' Limit

eth-I2xcbase

2.4. Speedup Multi-Core 143



CSIT REPORT, Release rls2001

2.4.2 IPv4 Routing

Following sections include Throughput Speedup Analysis for VPP multi- core multi-thread configurations
with no Hyper-Threading, specifically for tested 2t2c (2threads, 2cores) and 4t4c scenarios. 1t1c through-
put results are used as a reference for reported speedup ratio. Input data used for the graphs comes from
Phy-to-Phy 64B performance tests with VPP IPv4 Routed-Forwarding, including NDR throughput (zero
packet loss) and PDR throughput (<0.5% packet loss).

CSIT source code for the test cases used for plots can be found in CSIT git repository®*.

64 https://git.fd.io/csit/tree/tests/vpp/perf/ip4?h=rls2001

144 Chapter 2. VPP Performance


https://git.fd.io/csit/tree/tests/vpp/perf/ip4?h=rls2001

CSIT REPORT, Release rls2001

3n-hsw-x1710

64b-ip4routing-base-scale-dpdk

Speedup Multi-core: 3n-hsw-xI71 0—64b-\'p@outmg-base—scale—dpdk—n(ﬂ' i}

NIC: 35.80Mpps 4 ,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, P SRR R S’

35.00

30.00

N
wn
o
S

Packet Throughput [Mpps]
S
o o
o o

10.00
5.000
0.000
1 2 3 4
Number of Cores [Qty]
— ~ Perfect ~ Measured = Limit

dot1qg-ipdbase —@— ethip4-ip4dbase —@— ethip4-ip4scale2m

2.4. Speedup Multi-Core 145



CSIT REPORT, Release rls2001

Speedup Multi-core: 3n-hsw-xI71 O-64b-\'onutmg—base»scale«d pdk-pd® i}

40.00 . -

NIC: 35.80Mpps 7 -

35.00

30.00

) N
o o
o o
S S

Packet Throughput [Mpps]
I
o
o

10.00
5.000
0.000
1 2 3 4
Number of Cores [Qty]
~ Perfect ~ Measured ' Limit

dot1g-ipdbase —@— ethip4-ip4dbase —@— ethip4-ip4scale2m

146 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

3n-tsh-x520

64b-ip4routing-base-scale-ixgbe

Packet Throughput [Mpps]

Speedup Multi-core: 3n—tsh—x520—64b—ip4@uting—base—scale—ixgbe-ndF
2500  NIC2446Mpps
20.00

15.00

10.00

5.000
0.000
1 2 3 4
Number of Cores [Qty]
— Perfect ~ Measured =~ Limit
dot1g-ip4base —8— ethip4-ip4base —— ethip4-ip4scale20k

—®— ethip4-ip4scale200k —@— ethip4-ip4scale2m

2.4. Speedup Multi-Core

147



CSIT REPORT, Release rls2001

Speedup Multi-core: 3n-tsh-x520-64b—ip4%utimg—base-scale»ixgbe—de i}

25.00 NIC: 24.46Mpps

20.00

15.00

10.00

Packet Throughput [Mpps]

5.000

0.000

1 2 3 4
Number of Cores [Qty]
— T Perfect ~ Measured ' Limit
dot1g-ip4base —8— ethip4-ipdbase —— ethip4-ip4scale20k

—0— ethip4-ip4scale200k —@— ethip4-ip4scale2m

148 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

64b-features-ip4routing-base-ixgbe

Speedup Multi-core: 3n-tsh-><520-64b—fea@res—ip4routing—base»ixgbe—ﬂdr i}

25.00

20.00

15.00

10.00

Packet Throughput [Mpps]

5.000

0.000

NIC: 24.46Mpps

=
/_;:_:ﬁ——/
1 2 3 4
Number of Cores [Qty]
— — Perfect — Measured "°° Limit

ethip4-ip4base
—@— ethip4udp-ip4base-iacl50sf-10kflows
—8— ethip4udp-ip4base-iacl50sl-10kflows
—0— ethip4udp-ip4base-oacl50sf-10kflows
—8— ethip4udp-ip4base-oacl50sl-10kflows
ethip4udp-ip4base-nat44

2.4. Speedup Multi-Core

149



CSIT REPORT, Release rls2001

Speedup Multi-core: 3n-tsh-><520-64b—fea@res—ip4routing-base—ixgbe—ﬂdr i}

25.00

20.00

15.00

10.00

Packet Throughput [Mpps]

5.000

0.000

NIC: 24.46Mpps

. == =
== "
-
==
1 2 3
Number of Cores [Qty]
— — Perfect — Measured "°° Limit

ethip4-ip4base
—0— ethip4udp-ip4base-iacl50sf-10kflows
—8— ethip4udp-ip4base-iacl50sl-10kflows
—0— ethip4udp-ip4base-oacl50sf-10kflows
—8— ethip4udp-ip4base-oacl50sl-10kflows
ethip4udp-ip4base-nat44

150

Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

2n-dnv-x553

64b-ip4routing-base-scale-ixgbe

Speedup Multi-core: 2n—dnv—x553—64b-ip4¢buting-base—scaIe-ixgbe—ndﬂtsa i}

25.00

20.00

15.00

Packet Throughput [Mpps]

10.00

5.000
0.000
1 2 3 4
Number of Cores [Qty]
— ~ Perfect ~ Measured = Limit

ethip4-ipdbase —@— ethip4-ip4scale20k

2.4. Speedup Multi-Core 151



CSIT REPORT, Release rls2001

Speedup Multi-core: 2n-dnv-x553-64b—ip41ibut\ng—base-scaIe—ixgbe—pcﬂ'—tsa i}

25.00

20.00

15.00

Packet Throughput [Mpps]

10.00

5.000

0.000

1 2 3
Number of Cores [Qty]
~ Perfect ~ Measured ' Limit

ethip4-ip4base —@— ethip4-ip4scale20k

152

Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

64b-features-ip4routing-base-ixgbe

Speedup Multi-core: 2n-dnv-x553-64b—fea®res~ip4routing-base»ixgbe¥1dr»t@

25.00

20.00

15.00

Packet Throughput [Mpps]

10.00

5.000
0.000
1 2 3 4
Number of Cores [Qty]
— T Perfect ~ Measured ' Limit

ethip4-ip4base

2.4. Speedup Multi-Core 153



CSIT REPORT, Release rls2001

Speedup Multi-core: 2n-dnv-x553-64 FfeBire ipdroutinglbdsétixgbe®hdr i}
30.00 O
25.00

20.00

15.00

10.00

Packet Throughput [Mpps]

5.000

0.000
1 2 3 4

Number of Cores [Qty]
~ Perfect ~ Measured ' Limit

ethip4-ip4base

154 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

3n-dnv-x553

64b-ip4routing-base-scale-ixgbe

Speedup Multi-core: 3n—dnv—x553—64b-ip4¢buting-base—scaIe-ixgbe—ndﬂtsa i}

25.00

20.00

15.00

Packet Throughput [Mpps]

10.00

5.000
0.000
1 2 3 4
Number of Cores [Qty]
— ~ Perfect ~ Measured = Limit

ethip4-ipdbase —@— ethip4-ip4scale20k

2.4. Speedup Multi-Core 155



CSIT REPORT, Release rls2001

Speedup Multi-core: 3n-dnv-x553-64b—ip41ibut\ng—base-scaIe—ixgbe—pcﬂ'—tsa i}

25.00

20.00

15.00

Packet Throughput [Mpps]

10.00

5.000

0.000

1 2 3
Number of Cores [Qty]
~ Perfect ~ Measured ' Limit

ethip4-ip4base —@— ethip4-ip4scale20k

156

Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

64b-features-ip4routing-base-ixgbe

Speedup Multi-core: 3n-dnv-x553-64b—fea®res~ip4routing-base»ixgbe¥1dr»t@

25.00

20.00

15.00

Packet Throughput [Mpps]

10.00

5.000
0.000
1 2 3 4
Number of Cores [Qty]
— T Perfect ~ Measured ' Limit

ethip4-ip4base

2.4. Speedup Multi-Core 157



CSIT REPORT, Release rls2001

Speedup Multi-core: 3n-dnv-x553-64 FfeBire ipdroutinglbdsétixgbe®hdr i}
30.00 O
25.00

20.00

15.00

10.00

Packet Throughput [Mpps]

5.000

0.000
1 2 3 4

Number of Cores [Qty]
~ Perfect ~ Measured ' Limit

ethip4-ip4base

158 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

2.4.3 IPv6 Routing

Following sections include Throughput Speedup Analysis for VPP multi- core multi-thread configurations
with no Hyper-Threading, specifically for tested 2t2c (2threads, 2cores) and 4t4c scenarios. 1t1c through-
put results are used as a reference for reported speedup ratio. Input data used for the graphs comes from
Phy-to-Phy 78B performance tests with VPP IPvé Routed-Forwarding, including NDR throughput (zero
packet loss) and PDR throughput (<0.5% packet loss).

CSIT source code for the test cases used for plots can be found in CSIT git repository®°.

65 https://git.fd.io/csit/tree/tests/vpp/perf/ip6?h=rls2001

2.4. Speedup Multi-Core 159


https://git.fd.io/csit/tree/tests/vpp/perf/ip6?h=rls2001

CSIT REPORT, Release rls2001

3n-hsw-x1710

78b-ip6routing-base-scale-dpdk

160 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

2.4. Speedup Multi-Core 161



CSIT REPORT, Release rls2001

3n-tsh-x520

78b-ip6routing-base-scale-ixgbe

Speedup Multi-core: 3n—tsh—x520—78b—ip6@uting—base—scale—ixgbe-ndF i}

25.00 NIC: 24.46Mpps

20.00

15.00

10.00

Packet Throughput [Mpps]

5.000
0.000
1 2 3 4
Number of Cores [Qty]
— Perfect ~ Measured =~ Limit
dot1g-ip6base —8— ethip6-ip6base —— ethip6-ip6scale20k

—®— ethip6-ip6scale200k —@— ethip6-ip6scale2m

162 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Speedup Multi-core: 3n-tsh-x520-78b—ip6%utimg—base-scale»ixgbe—de

25.00 NIC: 24.46Mpps

20.00

15.00

10.00

Packet Throughput [Mpps]

5.000
0.000
1 2 3
Number of Cores [Qty]
— T Perfect ~ Measured ' Limit

dot1g-ipbbase —8— ethip6-ip6base
—0— ethip6-ip6scale200k —@— ethip6-ip6scale2m

—— ethip6-ip6scale20k

2.4. Speedup Multi-Core

163



CSIT REPORT, Release rls2001

2n-dnv-x553

78b-ip6routing-base-scale-ixgbe

Speedup Multi-core: Zn—dnv—x553—78b-ip6‘1='buting-base—scaIe-ixgbe—ndﬂtsa i}

25.00

20.00

15.00

Packet Throughput [Mpps]

10.00

5.000

0.000

1 2 3 4
Number of Cores [Qty]
— ~ Perfect ~ Measured = Limit

ethip6-ip6base —@— ethip6-ip6scale20k

164 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Speedup Multi-core: 2n-dnv-x553-78b—ip6‘1ibut\’ng—base-scaIe—ixgbe—pdﬂtsa i}

25.00

20.00

15.00

Packet Throughput [Mpps]

10.00

5.000
0.000
1 2 3 4
Number of Cores [Qty]
~ Perfect ~ Measured ' Limit

ethip6-ip6base —@— ethip6-ip6scale20k

2.4. Speedup Multi-Core 165



CSIT REPORT, Release rls2001

3n-dnv-x553

78b-ip6routing-base-scale-ixgbe

Speedup Multi-core: 3n—dnv—x553—78b-ip6‘1='buting-base—scaIe-ixgbe—ndﬂtsa i}

25.00

20.00

15.00

Packet Throughput [Mpps]

10.00

5.000

0.000

1 2 3 4
Number of Cores [Qty]
— ~ Perfect ~ Measured = Limit

ethip6-ip6base —@— ethip6-ip6scale20k

166 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Speedup Multi-core: 3n-dnv-x553-78b—ip6‘1ibut\’ng—base-scaIe—ixgbe—pdﬂtsa i}

25.00

20.00

15.00

Packet Throughput [Mpps]

10.00

5.000
0.000
1 2 3 4
Number of Cores [Qty]
~ Perfect ~ Measured ' Limit

ethip6-ip6base —@— ethip6-ip6scale20k

2.4. Speedup Multi-Core 167



CSIT REPORT, Release rls2001

2.4.4 SRvé6 Routing

Following sections include Throughput Speedup Analysis for VPP multi- core multi-thread configurations
with no Hyper-Threading, specifically for tested 2t2c (2threads, 2cores) and 4t4c scenarios. 1t1c through-
put results are used as a reference for reported speedup ratio. Input data used for the graphs comes from
Phy-to-Phy 78B performance tests with VPP SRvé, including NDR throughput (zero packet loss) and PDR
throughput (<0.5% packet loss).

CSIT source code for the test cases used for plots can be found in CSIT git repository®®.

66 https://git.fd.io/csit/tree/tests/vpp/perf/srv6?h=rls2001

168 Chapter 2. VPP Performance


https://git.fd.io/csit/tree/tests/vpp/perf/srv6?h=rls2001

CSIT REPORT, Release rls2001

3n-hsw-x1710

78b-srvé6-ip6routing-base-dpdk

Speedup Multi-core: 3n-hsw-xI71 0—78b-sr@5—ip6routing—base—d pok-ndm™ i}

NIC: 35.80Mpps

30.00

N
U
o
S

15.00

Packet Throughput [Mpps]
S
o
o

N
o
o
S

5.000

0.000

1 2 3 4

Number of Cores [Qty]
— — Perfect — Measured "°° Limit
ethip6ip6-ip6base-srvéencisid
—8— ethip6srhip6-ip6base-srvéenc2sids
—8— ethip6srhip6-ip6base-srv6enc2sids-nodecaps
—0— ethip6srhip6-ip6base-srv6proxy-dyn
—8— ethip6srhip6-ip6base-srv6proxy-masq
ethip6srhip6-ipbbase-srv6proxy-stat

2.4. Speedup Multi-Core 169



CSIT REPORT, Release rls2001

Speedup Multi-core: 3n-hsw-xI71 O-78b-sr@5—ip6routimg-base—d pok-pdm™ i}

35.00

30.00

N
wn
o
S

15.00

Packet Throughput [Mpps]
S
o
o

-
o
o
S

5.000

0.000

NIC: 35.80Mpps

1 2 3 4
Number of Cores [Qty]
— — Perfect — Measured "°° Limit

ethip6ip6-ip6base-srvéencisid
—@— ethip6srhip6-ip6base-srvéenc2sids
—8— ethip6srhip6-ip6base-srv6enc2sids-nodecaps
—0— ethip6srhip6-ip6base-srveproxy-dyn
—8— ethip6srhip6-ip6base-srv6proxy-masq
ethip6srhip6-ip6base-srv6proxy-stat

170

Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

3n-tsh-x520

78b-srvé6-ip6routing-base-ixgbe

Speedup Multi-core: 3n—tsh—x520—78b—srv@4’p6routing-base—ixgbe-ndr' i}

25.00 NIC: 24.46Mpps

20.00

15.00

10.00

Packet Throughput [Mpps]

5.000

0.000

1 2 3 4
Number of Cores [Qty]
— — Perfect — Measured "°° Limit

ethip6ip6-ip6base-srvéencisid
—8— ethip6srhip6-ip6base-srvéenc2sids
—8— ethip6srhip6-ip6base-srv6enc2sids-nodecaps
—0— ethip6srhip6-ip6base-srv6proxy-dyn
—8— ethip6srhip6-ip6base-srv6proxy-masq
ethip6srhip6-ipbbase-srv6proxy-stat

2.4. Speedup Multi-Core 171



CSIT REPORT, Release rls2001

Speedup Multi-core: 3n-tsh-x520-78b—srv@1’p6routmg—base—ixgbe—pdr' i}

25.00

20.00

15.00

10.00

Packet Throughput [Mpps]

5.000

0.000

NIC: 24.46Mpps

1 2 3
Number of Cores [Qty]
— — Perfect — Measured "°° Limit

ethip6ip6-ip6base-srvéencisid
—@— ethip6srhip6-ip6base-srvéenc2sids
—8— ethip6srhip6-ip6base-srv6enc2sids-nodecaps
—0— ethip6srhip6-ip6base-srveproxy-dyn
—8— ethip6srhip6-ip6base-srv6proxy-masq
ethip6srhip6-ip6base-srv6proxy-stat

172

Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

2.4.5 IPv4 Tunnels

Following sections include Throughput Speedup Analysis for VPP multi- core multi-thread configurations
with no Hyper-Threading, specifically for tested 2t2c (2threads, 2cores) and 4t4c scenarios. 1t1c through-
put results are used as a reference for reported speedup ratio. Performance is reported for VPP running
in multiple configurations of VPP worker thread(s), a.k.a. VPP data plane thread(s), and their physical CPU
core(s) placement.

CSIT source code for the test cases used for plots can be found in CSIT git repository®”.

67 https://git.fd.io/csit/tree/tests/vpp/perf/ip4_tunnels?h=rls2001

2.4. Speedup Multi-Core 173


https://git.fd.io/csit/tree/tests/vpp/perf/ip4_tunnels?h=rls2001

CSIT REPORT, Release rls2001

3n-hsw-x1710

64b-ip4tunnel-base-dpdk

Speedup Multi-core: 3n—hsw—xl710—64b-ip§tunnel—base—dpdk—ndr - i}

NIC: 35.80Mpps

35.00

30.00

N
wn
o
S

Packet Throughput [Mpps]
S
o o
o o

10.00
5.000
0.000
1 2 3 4
Number of Cores [Qty]
— ~ Perfect ~ Measured = Limit

ethip4vxlan-I2xcbase —@— ethip4vxlan-I2bdbasemacirn

174 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Speedup Multi-core: 3n-hsw-><|710-64b-\'p§§unmel—base-dpdk—pdr - i}

NIC: 35.80Mpps

35.00

30.00

N
o
o
S

Packet Throughput [Mpps]
o B
o o
o o

10.00
5.000
0.000
1 2 3 4
Number of Cores [Qty]
~ Perfect ~ Measured ' Limit

ethip4vxlan-I2xcbase —@— ethip4vxlan-I2bdbasemacirn

2.4. Speedup Multi-Core 175



CSIT REPORT, Release rls2001

3n-tsh-x520

64b-ip4tunnel-base-scale-ixgbe

Speedup Multi-core: 3n—tsh—x520—64b—ip4@nnel-base-scale—ixgbe—ndr' i}

25.00 NIC: 24.46Mpps

20.00

15.00

10.00

Packet Throughput [Mpps]

5.000

0.000

1 2 3 4

Number of Cores [Qty]

— — Perfect ~ Measured ' Limit

ethip4vxlan-I2xcbase
—8— ethip4vxlan-I2bdbasemacirn
—8— dot1g--ethip4vxlan-I2bdscale112bd1vlanivxlan
—8— dot1g--ethip4vxlan-I2bdscale10012bd100vlan100vxlan

176 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Speedup Multi-core: 3n-tsh-x520-64b—ip4@mnel»base—scale—ixgbe—pd rem i}

25.00 NIC: 24.46Mpps

20.00

15.00

10.00

Packet Throughput [Mpps]

5.000

0.000

1 2 3 4

Number of Cores [Qty]

Perfect ~— Measured '~ Limit

ethip4vxlan-I2xcbase
—8— ethip4vxlan-I2bdbasemacirn
—o— dot1g--ethip4vxlan-I2bdscale112bd1vlan1vxlan
—0— dot1g--ethip4vxlan-12bdscale10012bd100vlan100vxlan

2.4. Speedup Multi-Core 177



CSIT REPORT, Release rls2001

3n-dnv-x553

64b-ip4tunnel-base-scale-ixgbe

Speedup Multi-core: 3n—dnv—x553—64b-ip4‘§bnnel—base—scale-ixgbe-nd sz

25.00

20.00

15.00

Packet Throughput [Mpps]

10.00

5.000

0.000

1 2 3 4
Number of Cores [Qty]
— ~ Perfect ~ Measured = Limit

ethip4vxlan-I2xcbase —@— ethip4vxlan-I2bdbasemacirn

178 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Speedup Multi-core: 3n-dnv-x553-64b—ip4§bnnel»base«scale'ixgbe—pd sz

25.00

20.00

15.00

Packet Throughput [Mpps]

10.00

5.000
0.000
1 2 3 4
Number of Cores [Qty]
~ Perfect ~ Measured ' Limit

ethip4vxlan-I2xcbase —@— ethip4vxlan-I2bdbasemacirn

2.4. Speedup Multi-Core 179



CSIT REPORT, Release rls2001

2.4.6 KVM VMs vhost-user

Following sections include Throughput Speedup Analysis for VPP multi- core multi-thread configurations
with no Hyper-Threading, specifically for tested 2t2c (2threads, 2cores) and 4t4c scenarios. 1t1c through-
put results are used as a reference for reported speedup ratio. Input data used for the graphs comes from
Phy-to-Phy 64B performance tests with VM vhost-user, including NDR throughput (zero packet loss) and
PDR throughput (<0.5% packet loss).

CSIT source code for the test cases used for plots can be found in CSIT git repository®®.

68 https://git.fd.io/csit/tree/tests/vpp/perf/vm_vhost?h=rls2001

180 Chapter 2. VPP Performance


https://git.fd.io/csit/tree/tests/vpp/perf/vm_vhost?h=rls2001

CSIT REPORT, Release rls2001

3n-hsw-x1710

64b-vhost-base-dpdk-testpmd

Speedup Multi-core: 3n-hsw-xI1710-6455Bst-basedpak-ndr - i}

NIC: 35.80Mpps

35.00

30.00

N
wu
o
S

Packet Throughput [Mpps]
S
o
o

15.00
10.00
5.000
0.000
1 2 3 4
Number of Cores [Qty]
— — Perfect ~ Measured ~°° Limit

eth-12xcbase-eth-2vhostvr1024-1vm
—8— dot1g-I2bdbasemaclrn-eth-2vhostvr1024-1vm
—8— eth-I2bdbasemaclirn-eth-2vhostvr1024-1vm
—0— ethip4-ip4base-eth-2vhostvr1024-1vm

2.4. Speedup Multi-Core 181



CSIT REPORT, Release rls2001

Speedup Multi-core: 3n-hsw-><|710-64b—vk@st»base»dpdk—pdr - i}

NIC: 35.80Mpps

35.00

30.00

N
U
o
S

Packet Throughput [Mpps]
S
o
o

15.00
10.00
5.000
0.000
1 2 3 4
Number of Cores [Qty]
- Perfect ~— Measured '~ Limit

eth-I2xcbase-eth-2vhostvr1024-1vm
—8— dot1q-I2bdbasemaclrn-eth-2vhostvr1024-1vm
—o— eth-I2bdbasemaclrn-eth-2vhostvr1024-1vm
—®— ethip4-ip4base-eth-2vhostvr1024-1vm

182 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

64b-vhost-base-dpdk-vpp

Speedup Multi-core: 3n-hsw-><|710-64b—vk@st—base»dpdk—vpp—ndr - i}

NIC: 35.80Mpps

35.00

30.00

N
U
o
S

15.00

Packet Throughput [Mpps]
S
o
o

10.00
5.000
0.000
1 2 3 4
Number of Cores [Qty]
— Perfect ~ Measured ~ ' Limit

eth-12xcbase-eth-2vhostvr1024-1vm-vppl2xc
—8— ethip4-ip4base-eth-2vhostvr1024-1vm-vppip4

2.4. Speedup Multi-Core 183



CSIT REPORT, Release rls2001

Speedup Multi-core: 3n-hsw-><|710-64b-vH@st»base»dpdk—vpp—pdr - i}

NIC: 35.80Mpps

35.00

30.00

25.00

20.00

15.00

Packet Throughput [Mpps]

10.00
5.000
0.000
1 2 3 4
Number of Cores [Qty]
— T Perfect ~ Measured ' Limit

eth-12xcbase-eth-2vhostvr1024-1vm-vppl2xc
—8— ethip4-ip4base-eth-2vhostvr1024-1vm-vppip4

184 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

3n-tsh-x520

64b-vhost-base-ixghe

2.4. Speedup Multi-Core 185



CSIT REPORT, Release rls2001

186 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

64b-link-bonding-vhost-base-ixgbe

2.4. Speedup Multi-Core 187



CSIT REPORT, Release rls2001

188 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

2.4.7 LXC/DRC Container Memif

Following sections include Throughput Speedup Analysis for VPP multi- core multi-thread configurations
with no Hyper-Threading, specifically for tested 2t2c (2threads, 2cores) and 4t4c scenarios. 1t1c through-
put results are used as a reference for reported speedup ratio. Performance is reported for VPP running
in multiple configurations of VPP worker thread(s), a.k.a. VPP data plane thread(s), and their physical CPU
core(s) placement.

CSIT source code for the test cases used for plots can be found in CSIT git repository®?.

69 https://git.fd.io/csit/tree/tests/vpp/perf/container_memif?h=rls2001

2.4. Speedup Multi-Core 189


https://git.fd.io/csit/tree/tests/vpp/perf/container_memif?h=rls2001

CSIT REPORT, Release rls2001

3n-tsh-x520

64b-memif-base-ixgbe

Speedup Multi-core: 3n—tsh—x520—64b—meﬂif—base»ixgbe-ndr

Packet Throughput [Mpps]

25.00

20.00

15.00

10.00

5.000

0.000

NIC: 24.46Mpps

1 2 3
Number of Cores [Qty]
— — perfect ~ Measured ' Limit

eth-12xcbase-eth-2memif-1Ixc
—8— eth-12xcbase-eth-2memif-1dcr
—8— dot1g-I12bdbasemaclrn-eth-2memif-1dcr
—8— eth-I2bdbasemaclrn-eth-2memif-1ixc
—8— ethip4-ip4base-eth-2memif-1dcr

190

Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Speedup Multi-core: 3n-tsh-x520-64b—meﬂiﬂbase~ixgbe—pdr - i}
2500 MNIC2446Mpps
20.00

15.00

10.00

Packet Throughput [Mpps]

5.000
0.000
1 2 3 4
Number of Cores [Qty]
— — Perfect ~— Measured ' Limit

eth-12xcbase-eth-2memif-1Ixc
—8— eth-12xcbase-eth-2memif-1dcr
—o— dot1g-I2bdbasemacirn-eth-2memif-1dcr
—0— eth-I2bdbasemacirn-eth-2memif-1lIxc
—8— ethip4-ip4base-eth-2memif-1dcr

2.4. Speedup Multi-Core 191



CSIT REPORT, Release rls2001

2.4.8 IPSec IPv4 Routing

Following sections include Throughput Speedup Analysis for VPP multi- core multi-thread configurations
with no Hyper-Threading, specifically for tested 2t2c (2threads, 2cores) and 4t4c scenarios. 1t1c through-
put results are used as a reference for reported speedup ratio. VPP IPSec encryption is accelerated using
DPDK cryptodev library driving Intel Quick Assist (QAT) crypto PCle hardware cards. Performance is re-
ported for VPP running in multiple configurations of VPP worker thread(s), a.k.a. VPP data plane thread(s),
and their physical CPU core(s) placement.

CSIT source code for the test cases used for plots can be found in CSIT git repository”©.

70 https://git.fd.io/csit/tree/tests/vpp/perf/crypto?h=rls2001

192 Chapter 2. VPP Performance


https://git.fd.io/csit/tree/tests/vpp/perf/crypto?h=rls2001

CSIT REPORT, Release rls2001

3n-hsw-x1710

imix-ipsec-ip4routing-base-scale-sw-dpdk

Speedup Multi-core: 3n-hsw-xI71 O—imix—ip@ec—ipArouting—base—sca\e-sw—dpd@1

30.00

N
U
o
S

15.00

Packet Throughput [Mpps]
S
o
o

N
o
o
S

5.000

0.000

NIC: 35.80Mpps

—==3
e e
1 2 3 4
Number of Cores [Qty]
— — Perfect —— Measured """ Limit

ethipdipsec4tnlsw-ip4base-int-aes256gcm
—8— ethip4dipsec4tnlsw-ip4base-int-aes128cbc-hmac512sha
—8— ethip4ipsec1000tnisw-ip4base-int-aes256gcm
—0— ethip4ipsec1000tnisw-ip4base-int-aes128cbc-hmac512sha
—8— ethip4ipsec10000tnisw-ip4base-int-aes256gcm
ethip4ipsec10000tnisw-ip4base-int-aes128cbc-hmac512sha

2.4. Speedup Multi-Core

193



CSIT REPORT, Release rls2001

Speedup Multi-core: 3n-hsw-xI71 O-imix-ip@ec»ipzlrouting—base—sca\e—sW‘—dpd@)

35.00

30.00

N
wn
o
S

15.00

Packet Throughput [Mpps]
S
o
o

-
o
o
S

5.000

0.000

NIC: 35.80Mpps

;_r.’—;;: b4 9
1 2 3 4
Number of Cores [Qty]
— — Perfect — Measured "°° Limit

ethip4ipsec10000tnisw-ip4base-int-aes256gcm
—8— ethip4ipsec10000tnisw-ip4base-int-aes128cbc-hmac512sha
—8— ethip4ipsec1000tnisw-ip4base-int-aes256gcm
—0— ethip4ipsec1000tnlsw-ip4base-int-aes128cbc-hmac512sha
—8— ethip4ipsec1000tnlhw-ip4base-int-aes256gcm
ethip4ipsec1000tnlhw-ip4base-int-aes128cbc-hmac512sha

194

Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

imix-ipsec-ip4routing-base-scale-hw-dpdk

Speedup Multi-core: 3n-hsw-xI71 O-imix»ip@ec»ipArouting—base—sca\e»hW—dpdmw

35.00

30.00

N
U
o
S

15.00

Packet Throughput [Mpps]
S
o
o

10.00

5.000

0.000

NIC: 35.80Mpps

1 2 3 4
Number of Cores [Qty]
— — Perfect ~ Measured ' Limit

ethipdipsecitnlhw-ip4base-int-aes256gcm
—8— ethip4dipsecltnlhw-ip4base-int-aes128cbc-hmac512sha
—8— ethip4ipsec1000tnihw-ip4base-int-aes256gcm
—0— ethip4ipsec1000tnlhw-ip4base-int-aes128cbc-hmac512sha

2.4. Speedup Multi-Core

195



CSIT REPORT, Release rls2001

Speedup Multi-core: 3n-hsw-xI71 O-imix-ip@ec»ipzlrouting—base—sca\e—hW—dpd@)

35.00

30.00

N
U
o
S

15.00

Packet Throughput [Mpps]
S
o
o

10.00

5.000

0.000

NIC: 35.80Mpps

L IR
1 2 3
Number of Cores [Qty]
- Perfect ~— Measured '~ Limit

ethipdipsecitnlhw-ip4base-int-aes256gcm
—8— ethip4dipsecltnlhw-ip4base-int-aes128cbc-hmac512sha
—8— ethipdipsec4tnlsw-ip4base-int-aes256gcm
—0— ethipdipsec4tnlsw-ip4base-int-aes128cbc-hmac512sha

196

Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

3n-tsh-x520

imix-ipsec-ip4routing-base-scale-sw-ixgbe

Speedup Multi-core: 3n—tsh—x520—imix—ipsgk-fpzlrout'\ng—base-scale—swﬁgbe-m

2500 NIG2446MPPS
20.00

15.00

10.00

Packet Throughput [Mpps]

5.000
_______________ =3
0.000
1 2 3 4
Number of Cores [Qty]
— Perfect ~ Measured = Limit

ethip4ipsec4tnisw-ip4base-int-aes256gcm
—@— ethip4ipsec1000tnisw-ip4base-int-aes256gcm
—8— ethip4ipsec10000tnisw-ip4base-int-aes256gcm

2.4. Speedup Multi-Core 197



CSIT REPORT, Release rls2001

Speedup Multi-core: 3n-tsh-><520-imix—ipsgk—fpétrouting-base—scale—swﬂgbe—%

2500 NIG2440MPPS
20.00

15.00

10.00

Packet Throughput [Mpps]

5.000
0.000
1 2 3 4
Number of Cores [Qty]
- Perfect ~ Measured ~ ' Limit

ethip4ipsec4tnlsw-ip4base-int-aes256gcm
—8— ethip4ipsec1000tnisw-ip4base-int-aes256gcm
—8— ethip4ipsec10000tnisw-ip4base-int-aes256gcm

198 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

3n-dnv-x553

imix-ipsec-ip4routing-base-scale-sw-ixgbe

Speedup Multi-core: 3n—dnv—x553—imix—ips‘%c—ip4routing—base—scale—svﬁxgbemc

25.00

- N
wn o
o o
S S

Packet Throughput [Mpps]
S
o
o

5.000

0.000

-
a~— :L =9
1 2 3 4
Number of Cores [Qty]
— — Perfect ~ Measured ' Limit

ethipdipsec4tnisw-ip4base-int-aes256gcm
—0— ethip4dipsecdtnlsw-ip4base-int-aes128cbc-hmac512sha
—8— ethip4ipsec1000tnisw-ip4base-int-aes256gcm
—0— ethip4ipsec1000tnisw-ip4base-int-aes128cbc-hmac512sha

2.4. Speedup Multi-Core

199



CSIT REPORT, Release rls2001

Speedup Multi-core: 3n-dnv-x553-imix—ipé%c—ipdfroutimg»base—scale—svﬂxgbemc

25.00

N
o
o
S

15.00

10.00

Packet Throughput [Mpps]

5.000
-
0.000 = - e
1 2 3 4
Number of Cores [Qty]
- Perfect ~—— Measured '~ Limit

ethip4ipsec4tnlsw-ip4base-int-aes256gcm
—8— ethip4dipsec4tnlsw-ip4base-int-aes128cbc-hmac512sha
—8— ethip4ipsec1000tnisw-ip4base-int-aes256gcm
—0— ethip4ipsec1000tnisw-ip4base-int-aes128cbc-hmac512sha

200 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

2.5 Packet Latency

VPP latency results are generated based on the test data obtained from CSIT-2001 NDR-PDR throughput
tests executed across physical testbeds hosted in LF FD.io labs: 3n-hsw, 3n-skx, 2n- skx, 2n-clx, 3n-dnv,
2n-dnv, 3n-tsh.

Latency by percentile distribution plots are used to show packet latency percentiles at different packet
rate load levels: i) No-Load latency streams only, ii) Low-Load at 10% PDR, iii) Mid-Load at 50% PDR and
iv) High-Load at 90% PDR.

Additional information about graph data:

1.

au A ODN

Graph Title: describes tested DUT packet path.

. X-axis Labels: percentile of packets.
. Y-axis Labels: measured one-way packet latency values in [uSec].
. Graph Legend: list of latency tests at different packet rate load level.

. Hover Information: packet rate load level, stream direction (East-West, West-East), percentile, one-

way latency.

Note: Test results have been generated by FD.io test executor vpp performance job 3n-hsw’! and FD.io
test executor vpp performance job 3n-tsh’2 with RF result files csit-vpp-perf-2001-*.zip archived here.

71 https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-3n-hsw
72 https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-3n-tsh

2.5. Packet Latency 201


https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-3n-hsw
https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-3n-tsh
https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-3n-tsh

CSIT REPORT, Release rls2001

2.5.1 L2 Ethernet Switching

CSIT source code for the test cases used for plots can be found in CSIT git repository’S.

73 https://git.fd.io/csit/tree/tests/vpp/perf/I2?h=rls2001

202 Chapter 2. VPP Performance


https://git.fd.io/csit/tree/tests/vpp/perf/l2?h=rls2001

CSIT REPORT, Release rls2001

3n-hsw-x1710

64b-1t1c-12switching-base-scale-dpdk

Q «= @\
Latency: dot1g-I2xcbase

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

2.5. Packet Latency 203



CSIT REPORT, Release rls2001

e «= M|
Latency: dot1g-I2bdbasemaclrn

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

204 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

e «=m

Latency: eth-I2patch

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

2.5. Packet Latency 205



CSIT REPORT, Release rls2001

Q «= M
Latency: eth-I2xcbase

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

206 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Q - i
Latency: eth-I2bdbasemacirn

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

2.5. Packet Latency 207



CSIT REPORT, Release rls2001

Q - i
Latency: eth-I2bdscaleTmmacirn

140

o ) o N
o o [s] o

One-Way Latency per Direction [uSec]
iy
o

20

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

208 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

3n-tsh-x520

64b-1tlc-12switching-base-scale-ixghe

Q «= [

Latency: dot1g-I2xcbase

2000

1500

1000

One-Way Latency per Direction [uSec]

500
R
F_r_ —————————
0
0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

2.5. Packet Latency 209



CSIT REPORT, Release rls2001

e «= M|
Latency: dot1g-I2bdbasemaclrn

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

210 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Q «= M
Latency: eth-I2patch

1400

1200

1000

800

600

400

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

2.5. Packet Latency 211



CSIT REPORT, Release rls2001

Q «= M
Latency: eth-I2xcbase

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

212 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Q - i
Latency: eth-I2bdbasemacirn

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

2.5. Packet Latency 213



CSIT REPORT, Release rls2001

214 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Q - i
Latency: eth-I2bdscale100kmacirn

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

2.5. Packet Latency 215



CSIT REPORT, Release rls2001

Q - i
Latency: eth-I2bdscaleTmmacirn

500

) w IN
o S 1)
) IS S

One-Way Latency per Direction [uSec]

o
]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

216 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

64b-1tlc-features-12switching-base-ixgbe

Q - i
Latency: eth-I2bdbasemaclrn-iacl50sf-10kflows

250

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

2.5. Packet Latency 217



CSIT REPORT, Release rls2001

Q - i
Latency: eth-I2bdbasemaclirn-iacl50sl-10kflows

250

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

218 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Q - i
Latency: eth-I2bdbasemaclrn-oacl50sf-10kflows

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

2.5. Packet Latency 219



CSIT REPORT, Release rls2001

Q - i
Latency: eth-I2bdbasemaclrn-oacl50sl-10kflows

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

220 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Q «= M
Latency: eth-I2bdbasemaclrn-macip-iacl50sl-10kflows

One-Way Latency per Direction [uSec]

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

2.5. Packet Latency 221



CSIT REPORT, Release rls2001

2.5.2 IPv4 Routing

CSIT source code for the test cases used for plots can be found in CSIT git repository’4.

74 https://git.fd.io/csit/tree/tests/vpp/perf/ip4?h=rls2001

222 Chapter 2. VPP Performance


https://git.fd.io/csit/tree/tests/vpp/perf/ip4?h=rls2001

CSIT REPORT, Release rls2001

3n-hsw-x1710

64b-1tlc-ip4routing-base-scale-dpdk

One-Way Latency per Direction [uSec]

Q «= @\
Latency: dot1g-ip4base

120

o
o

]
o

o
o

N
o

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

2.5. Packet Latency

223



CSIT REPORT, Release rls2001

Q - i
Latency: ethip4-ip4base

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

224 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Q - i
Latency: ethip4-ip4scale2m

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

2.5. Packet Latency 225



CSIT REPORT, Release rls2001

3n-tsh-x520

64b-1tlc-ip4routing-base-scale-ixgbe

Q «= @\
Latency: dot1g-ip4base

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

226 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

e «= M|
Latency: ethip4-ip4scale20k

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

2.5. Packet Latency 227



CSIT REPORT, Release rls2001

4000

3500

3000

2500

2000

1500

1000

One-Way Latency per Direction [uSec]

500

e «=m

Latency: ethip4-ip4scale200k

25

No-load.
— Mid-load, 50% PDR.

50 75 100

Percentile [%]

— Low-load, 10% PDR.
High-load, 90% PDR.

228

Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Q - i
Latency: ethip4-ip4scale2m

5000

4000

3000

2000

One-Way Latency per Direction [uSec]

o
<]
]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

2.5. Packet Latency 229



CSIT REPORT, Release rls2001

64b-1t1c-ip4routing-features-ixgbe

2500

2000

1500

1000

One-Way Latency per Direction [uSec]

[0
[=}
o

Q
Latency: ethip4udp-ip4base-iacl50sf-10kflows

25 50 75

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

230

Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Q «= M
Latency: ethip4udp-ip4base-iacl50s|-10kflows

200

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

2.5. Packet Latency 231



CSIT REPORT, Release rls2001

e «= M|
Latency: ethip4udp-ip4base-oacl50sf-10kflows

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

232 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Q - i
Latency: ethip4udp-ip4base-oacl50sl-10kflows

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

2.5. Packet Latency 233



CSIT REPORT, Release rls2001

e «= M|
Latency: ethip4udp-ip4base-nat44

200

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

234 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Q - i
Latency: ethip4udp-ip4scale1000-udpsrcscalel15-nat44

7000

w N S o
o o o =3
S S S S
o o o o

N
o
S
o

One-Way Latency per Direction [uSec]

1000
0 %—

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

2.5. Packet Latency 235



CSIT REPORT, Release rls2001

2.5.3 IPv6 Routing

CSIT source code for the test cases used for plots can be found in CSIT git repository”>.

75 https://git.fd.io/csit/tree/tests/vpp/perf/ip6?h=rls2001

236 Chapter 2. VPP Performance


https://git.fd.io/csit/tree/tests/vpp/perf/ip6?h=rls2001

CSIT REPORT, Release rls2001

3n-hsw-x1710

78b-1t1c-ip6routing-base-scale-dpdk

Q «= @\
Latency: dot1g-ip6base

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

2.5. Packet Latency 237



CSIT REPORT, Release rls2001

Q - i
Latency: ethip6-ip6base

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

238 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Q - i
Latency: ethip6-ip6scale2m

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

2.5. Packet Latency 239



CSIT REPORT, Release rls2001

3n-tsh-x520

78b-1t1c-ip6routing-base-scale-ixgbe

Q «= @\
Latency: dot1g-ip6base

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

240 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Q - i
Latency: ethip6-ip6base

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

2.5. Packet Latency 241



CSIT REPORT, Release rls2001

(O} -
Latency: ethip6-ip6scale20k

250

— N
[ o
o o

One-Way Latency per Direction [uSec]
=)
o

50

No-load.
— Mid-load, 50% PDR.

— Low-load, 10% PDR.
—— High-load, 90% PDR.

100

242

Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Q - i
Latency: ethip6-ip6scale200k

3000

N
%]
o
o

2000

1500

1000

One-Way Latency per Direction [uSec]

500
__
0 ———
0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

2.5. Packet Latency 243



CSIT REPORT, Release rls2001

Q - i
Latency: ethip6-ip6scale2m

One-Way Latency per Direction [uSec]

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

244 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

2.5.4 SRvé6 Routing

CSIT source code for the test cases used for plots can be found in CSIT git repository’®.

76 https://git.fd.io/csit/tree/tests/vpp/perf/srv6?h=rls2001

2.5. Packet Latency 245


https://git.fd.io/csit/tree/tests/vpp/perf/srv6?h=rls2001

CSIT REPORT, Release rls2001

3n-hsw-x1710

78b-1tlc-srvé6-ip6routing-base-dpdk

Q «= @\
Latency: ethip6ip6-ip6base-srv6encisid

120

o
o

]
o

60

40

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

246 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Q «= M
Latency: ethip6srhip6-ip6base-srv6enc2sids

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

2.5. Packet Latency 247



CSIT REPORT, Release rls2001

Q - i
Latency: ethip6srhip6-ip6base-srvéenc2sids-nodecaps

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

248 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

e «= M|
Latency: ethip6srhip6-ip6base-srv6proxy-dyn

One-Way Latency per Direction [uSec]

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

2.5. Packet Latency 249



CSIT REPORT, Release rls2001

e «= M|
Latency: ethip6srhip6-ip6base-srv6proxy-masq

300

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

250 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

3n-tsh-x520

78b-1tlc-srv6-ip6routing-base-ixgbe

Q «= @\
Latency: ethip6ip6-ip6base-srv6encisid

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

2.5. Packet Latency 251



CSIT REPORT, Release rls2001

Q «= M
Latency: ethip6srhip6-ip6base-srv6enc2sids

One-Way Latency per Direction [uSec]

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

252 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Q - i
Latency: ethip6srhip6-ip6base-srvéenc2sids-nodecaps

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

2.5. Packet Latency 253



CSIT REPORT, Release rls2001

e «= M|
Latency: ethip6srhip6-ip6base-srv6proxy-dyn

500

) w IS
o ) )
S ) IS

One-Way Latency per Direction [uSec]

o
o

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

254 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

e «= M|
Latency: ethip6srhip6-ip6base-srv6proxy-masq

500

w B
o o
o o

One-Way Latency per Direction [uSec]
N
o
o

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

2.5. Packet Latency

255



CSIT REPORT, Release rls2001

2.5.5 IPv4 Tunnels

CSIT source code for the test cases used for plots can be found in CSIT git repository””.

77 https://git.fd.io/csit/tree/tests/vpp/perf/ip4_tunnels?h=rls2001

256 Chapter 2. VPP Performance


https://git.fd.io/csit/tree/tests/vpp/perf/ip4_tunnels?h=rls2001

CSIT REPORT, Release rls2001

3n-hsw-x1710

64b-1tlc-ip4tunnel-base-dpdk

One-Way Latency per Direction [uSec]

Q «= @\
Latency: ethip4vxlan-I2xcbase

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

2.5. Packet Latency

257



CSIT REPORT, Release rls2001

Q - i
Latency: ethip4vxlan-I2bdbasemacirn

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

258 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

3n-tsh-x520

64b-1tlc-ip4tunnel-base-scale-ixghe

Q «= @\
Latency: ethip4vxlan-I2xcbase

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

2.5. Packet Latency 259



CSIT REPORT, Release rls2001

Q - i
Latency: ethip4vxlan-I2bdbasemacirn

350

= — N N w
o u o %] o
s} o o o o

One-Way Latency per Direction [uSec]

%]
o

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

260 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

2.5. Packet Latency 261



CSIT REPORT, Release rls2001

262 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

2.5.6 KVM VMs vhost-user

CSIT source code for the test cases used for plots can be found in CSIT git repository’®.

78 https://git.fd.io/csit/tree/tests/vpp/perf/vm_vhost?h=rls2001

2.5. Packet Latency 263


https://git.fd.io/csit/tree/tests/vpp/perf/vm_vhost?h=rls2001

CSIT REPORT, Release rls2001

3n-hsw-x1710

64b-1tlc-vhost-base-dpdk

Q «= @\
Latency: dot1q-I2xcbase-eth-2vhostvr1024-1vm

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

264 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Q «= M
Latency: dot1g-12xcbase-eth-2vhostvr1024-1vm-vppl2xc

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

2.5. Packet Latency 265



CSIT REPORT, Release rls2001

Q - i
Latency: dot1g-I2bdbasemaclrn-eth-2vhostvr1024-1vm

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

266 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Q «= M
Latency: dot1g-I2bdbasemaclrn-eth-2vhostvr1024-1vm-vppl2xc

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

2.5. Packet Latency 267



CSIT REPORT, Release rls2001

Q - i
Latency: eth-I2xcbase-eth-2vhostvr1024-1vm

One-Way Latency per Direction [uSec]

0
0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

268 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

One-Way Latency per Direction [uSec]

Q - i
Latency: eth-I2bdbasemaclrn-eth-2vhostvr1024-1vm

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

2.5. Packet Latency

269



CSIT REPORT, Release rls2001

One-Way Latency per Direction [uSec]

(O} -
Latency: eth-I2bdbasemaclrn-eth-2vhostvr1024-1vm-vppl2xc

150

100

50

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

270

Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

One-Way Latency per Direction [uSec]

Q - i
Latency: ethip4-ip4base-eth-2vhostvr1024-1vm

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

2.5. Packet Latency

271



CSIT REPORT, Release rls2001

e «=m

Latency: ethip4-ip4base-eth-2vhostvr1024-1vm-vppip4

200

150

100

50

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

272 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

3n-tsh-x520

64b-1tlc-vhost-base-ixgbe

Q «= @\
Latency: dot1g-I12bdbasemaclrn-eth-2vhostvr1024-1vm-vppl2xc

300

N
%
o

N
o
o

100

One-Way Latency per Direction [uSec]
o
o

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

2.5. Packet Latency

273



CSIT REPORT, Release rls2001

Q «= M
Latency: dot1g-12xcbase-eth-2vhostvr1024-1vm-vppl2xc

One-Way Latency per Direction [uSec]

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

274 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

2.5. Packet Latency 275



CSIT REPORT, Release rls2001

Q «= M
Latency: eth-I2xcbase-eth-2vhostvr1024-1vm-vppl2xc

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

276 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Q «= M
Latency: ethip4-ip4base-eth-2vhostvr1024-1vm-vppip4

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

2.5. Packet Latency 277



CSIT REPORT, Release rls2001

Q «= M
Latency: ethip4vxlan-I2bdbasemaclrn-eth-2vhostvr1024-1vm-vppl2xc

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

278 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

2.5.7 LXC/DRC Container Memif

CSIT source code for the test cases used for plots can be found in CSIT git repository”?.

79 https://git.fd.io/csit/tree/tests/vpp/perf/container_memif?h=rls2001

2.5. Packet Latency 279


https://git.fd.io/csit/tree/tests/vpp/perf/container_memif?h=rls2001

CSIT REPORT, Release rls2001

3n-tsh-x520

64b-1t1c-memif-base-ixgbe

Q «= @\
Latency: dot1q-I2bdbasemaclrn-eth-2memif-1dcr

1000

800

600

400

One-Way Latency per Direction [uSec]

0
0 25 50 75 100
Percentile [%]
No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

280 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Q «= M
Latency: eth-I2xcbase-eth-2memif-1dcr

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

2.5. Packet Latency 281



CSIT REPORT, Release rls2001

Q - i
Latency: eth-12xcbase-eth-2memif-1ixc

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

282 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Q - i
Latency: eth-I2bdbasemaclrn-eth-2memif-1ixc

1000

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

2.5. Packet Latency 283



CSIT REPORT, Release rls2001

Q - i
Latency: ethip4-ip4base-eth-2memif-1dcr

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

284 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

2.5.8 IPSec IPv4 Routing

CSIT source code for the test cases used for plots can be found in CSIT git repository®°.

80 https://git.fd.io/csit/tree/tests/vpp/perf/crypto?h=rls2001

2.5. Packet Latency 285


https://git.fd.io/csit/tree/tests/vpp/perf/crypto?h=rls2001

CSIT REPORT, Release rls2001

3n-hsw-x1710

1518b-1t1c-ipsec-ip4routing-base-scale-sw-dpdk

Q «= @\
Latency: ethip4dipsec4tnisw-ip4base-int-aes128cbc-hmac512sha

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

286 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Q - i
Latency: ethip4ipsec4tnlsw-ip4base-int-aes256gcm

800

One-Way Latency per Direction [uSec]

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

2.5. Packet Latency 287



CSIT REPORT, Release rls2001

e «= M|
Latency: ethip4ipsec1000tnisw-ip4base-int-aes128cbc-hmac512sha

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

288 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Q - i
Latency: ethip4ipsec1000tnisw-ip4base-int-aes256gcm

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

2.5. Packet Latency 289



CSIT REPORT, Release rls2001

Q - i
Latency: ethip4ipsec10000tnisw-ip4base-int-aes128cbc-hmac512sha

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

290 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Q - i
Latency: ethip4ipsec10000tnisw-ip4base-int-aes256gcm

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

2.5. Packet Latency 291



CSIT REPORT, Release rls2001

1518b-1t1c-ipsec-ip4routing-base-scale-hw-dpdk

Q - i
Latency: ethipdipsecltnlhw-ip4base-int-aes128cbc-hmac512sha

200

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

292 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

e «= M|
Latency: ethip4ipsecitnlhw-ip4base-int-aes256gcm

200

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

2.5. Packet Latency 293



CSIT REPORT, Release rls2001

e «= M|
Latency: ethip4ipsec1000tnihw-ip4base-int-aes128cbc-hmac512sha

350

300

N
9]
o

N
o
o

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

294 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

One-Way Latency per Direction [uSec]

e «= M|
Latency: ethip4ipsec1000tnlhw-ip4base-int-aes256gcm

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

2.5. Packet Latency

295



CSIT REPORT, Release rls2001

3n-tsh-x520

1518b-1t1c-ipsec-ip4routing-base-scale-sw-ixgbe

Q «= @\
Latency: ethipdipsecdtnisw-ip4base-int-aes256gcm

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

296 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

Q - i
Latency: ethip4ipsec1000tnisw-ip4base-int-aes256gcm

1000

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

2.5. Packet Latency 297



CSIT REPORT, Release rls2001

Q - i
Latency: ethip4ipsec10000tnisw-ip4base-int-aes256gcm

1200

o) ] o
o o S
o o o

One-Way Latency per Direction [uSec]
n
o
o

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

298 Chapter 2. VPP Performance



CSIT REPORT, Release rls2001

2.6 Comparisons

2.6.1 Current vs. Previous Release

Relative comparison of VPP packet throughput (NDR, PDR and MRR) between VPP-20.01 release and
VPP-19.08 release (measured for CSIT-2001 and CSIT-1908 respectively) is calculated from results of
tests running on 2-node Intel Xeon Skylake (2n-skx), 3-node Intel Xeon Skylake (3n-skx), 3-Node Intel
Xeon Haswell (3n-hsw), 2-node Intel Atom Denverton (2n-dnv), 3-node Intel Atom Denverton (3n-dnv),
3-node Arm TaiShan (3n-tsh) testbeds, in 1-core, 2-core and 4-core (MRR only) configurations.

Listed mean and standard deviation values are computed based on a series of the same tests executed
against respective VPP releases to verify test results repeatability, with percentage change calculated for
mean values. Note that the standard deviation is quite high for a small number of packet throughput tests,
what indicates poor test results repeatability and makes the relative change of mean throughput value
not fully representative for these tests. The root causes behind poor results repeatability vary between
the test cases.

Note: Test results have been generated by

e FD.io test executor vpp performance job 2n-skx®,

FD.io test executor vpp performance job 3n-skx82,

FD.io test executor vpp performance job 3n-hsw?3,

FD.io test executor vpp performance job 2n-dnv8,

FD.io test executor vpp performance job 3n-dnv®>,

FD.io test executor vpp performance job 3n-tsh8

with RF result files csit-vpp-perf-2001-*.zip archived here.

3n-hsw

NDR Comparison

Comparison tables in HTML, ASCIl and CSV formats:
e HTML 1t1c NDR comparison

HTML 2t2c NDR comparison

ASCII 1t1c NDR comparison

ASCII 2t2c NDR comparison

CSV 1tlc NDR comparison

CSV 2t2c NDR comparison

PDR Comparison

Comparison tables in HTML, ASCIl and CSV formats:

81 https://jenkins.fd.io/view/csit/job/csit-vpp- perf-verify-2001-2n-skx
82 https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-3n-skx
83 https:/jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-3n-hsw
84 https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-2n-dnv
85 https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-3n-dnv
86 https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-3n-tsh

2.6. Comparisons 299


https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-2n-skx
https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-3n-skx
https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-3n-hsw
https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-2n-dnv
https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-3n-dnv
https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-2001-3n-tsh
../../_static/vpp/performance-changes-3n-hsw-1t1c-ndr.html
../../_static/vpp/performance-changes-3n-hsw-2t2c-ndr.html
../../_static/vpp/performance-changes-3n-hsw-1t1c-ndr.txt
../../_static/vpp/performance-changes-3n-hsw-2t2c-ndr.txt
../../_static/vpp/performance-changes-3n-hsw-1t1c-ndr.csv
../../_static/vpp/performance-changes-3n-hsw-2t2c-ndr.csv

CSIT REPORT, Release rls2001

HTML 1t1c PDR comparison
HTML 2t2c PDR comparison
ASCII 1t1c PDR comparison
ASCII 2t2c PDR comparison
CSV 1t1c PDR comparison
CSV 2t2c PDR comparison

MRR Comparison

Comparison tables in HTML, ASCIl and CSV formats:

¢ HTML 1t1c MRR comparison
e HTML 2t2c MRR comparison
e HTML 4t4c MRR comparison
e ASCII 1t1c MRR comparison
e ASCII 2t2c MRR comparison
e ASCII 4t4c MRR comparison
e CSV 1t1c MRR comparison

e CSV 2t2c MRR comparison

e CSV 4t4c MRR comparison

2n-dnv

NDR Comparison

Comparison tables in HTML, ASCIl and CSV formats:
HTML 1t1c NDR comparison

HTML 2t2c NDR comparison

ASCIl 1t1c NDR comparison

ASCII 2t2c NDR comparison

CSV 1tl1c NDR comparison

CSV 2t2c NDR comparison

PDR Comparison

Comparison tables in HTML, ASCIl and CSV formats:
e HTML 1t1c PDR comparison
e HTML 2t2c PDR comparison

ASCII 1t1c PDR comparison

ASCII 2t2c PDR comparison

CSV 1t1c PDR comparison

CSV 2t2c PDR comparison

300 Chapter 2. VPP Performance


../../_static/vpp/performance-changes-3n-hsw-1t1c-pdr.html
../../_static/vpp/performance-changes-3n-hsw-2t2c-pdr.html
../../_static/vpp/performance-changes-3n-hsw-1t1c-pdr.txt
../../_static/vpp/performance-changes-3n-hsw-2t2c-pdr.txt
../../_static/vpp/performance-changes-3n-hsw-1t1c-pdr.csv
../../_static/vpp/performance-changes-3n-hsw-2t2c-pdr.csv
../../_static/vpp/performance-changes-3n-hsw-1t1c-mrr.html
../../_static/vpp/performance-changes-3n-hsw-2t2c-mrr.html
../../_static/vpp/performance-changes-3n-hsw-4t4c-mrr.html
../../_static/vpp/performance-changes-3n-hsw-1t1c-mrr.txt
../../_static/vpp/performance-changes-3n-hsw-2t2c-mrr.txt
../../_static/vpp/performance-changes-3n-hsw-4t4c-mrr.txt
../../_static/vpp/performance-changes-3n-hsw-1t1c-mrr.csv
../../_static/vpp/performance-changes-3n-hsw-2t2c-mrr.csv
../../_static/vpp/performance-changes-3n-hsw-4t4c-mrr.csv
../../_static/vpp/performance-changes-2n-dnv-1t1c-ndr.html
../../_static/vpp/performance-changes-2n-dnv-2t2c-ndr.html
../../_static/vpp/performance-changes-2n-dnv-1t1c-ndr.txt
../../_static/vpp/performance-changes-2n-dnv-2t2c-ndr.txt
../../_static/vpp/performance-changes-2n-dnv-1t1c-ndr.csv
../../_static/vpp/performance-changes-2n-dnv-2t2c-ndr.csv
../../_static/vpp/performance-changes-2n-dnv-1t1c-pdr.html
../../_static/vpp/performance-changes-2n-dnv-2t2c-pdr.html
../../_static/vpp/performance-changes-2n-dnv-1t1c-pdr.txt
../../_static/vpp/performance-changes-2n-dnv-2t2c-pdr.txt
../../_static/vpp/performance-changes-2n-dnv-1t1c-pdr.csv
../../_static/vpp/performance-changes-2n-dnv-2t2c-pdr.csv

CSIT REPORT, Release rls2001

MRR Comparison

Comparison tables in HTML, ASCIl and CSV formats:

e HTML 1t1lc MRR comparison
e HTML 2t2c MRR comparison
e HTML 4t4c MRR comparison
e ASCII 1t1c MRR comparison
e ASCII 2t2¢c MRR comparison
e ASCII 4t4c MRR comparison
e CSV 1t1c MRR comparison

e CSV 2t2c MRR comparison

e CSV 4t4c MRR comparison

3n-dnv

NDR Comparison

Comparison tables in HTML, ASCIl and CSV formats:
e HTML 1t1c NDR comparison
e HTML 2t2c NDR comparison

ASCII 1t1c NDR comparison

ASCII 2t2c NDR comparison

CSV 1t1c NDR comparison

CSV 2t2c NDR comparison

PDR Comparison

Comparison tables in HTML, ASCIl and CSV formats:
HTML 1t1c PDR comparison

HTML 2t2c PDR comparison

ASCII 1t1c PDR comparison

ASCII 2t2c PDR comparison

CSV 1t1c PDR comparison

CSV 2t2c PDR comparison

MRR Comparison

Comparison tables in HTML, ASCIl and CSV formats:
¢ HTML 1t1c MRR comparison

HTML 2t2c MRR comparison

HTML 4t4c MRR comparison

ASCIl 1t1c MRR comparison

2.6. Comparisons 301


../../_static/vpp/performance-changes-2n-dnv-1t1c-mrr.html
../../_static/vpp/performance-changes-2n-dnv-2t2c-mrr.html
../../_static/vpp/performance-changes-2n-dnv-4t4c-mrr.html
../../_static/vpp/performance-changes-2n-dnv-1t1c-mrr.txt
../../_static/vpp/performance-changes-2n-dnv-2t2c-mrr.txt
../../_static/vpp/performance-changes-2n-dnv-4t4c-mrr.txt
../../_static/vpp/performance-changes-2n-dnv-1t1c-mrr.csv
../../_static/vpp/performance-changes-2n-dnv-2t2c-mrr.csv
../../_static/vpp/performance-changes-2n-dnv-4t4c-mrr.csv
../../_static/vpp/performance-changes-3n-dnv-1t1c-ndr.html
../../_static/vpp/performance-changes-3n-dnv-2t2c-ndr.html
../../_static/vpp/performance-changes-3n-dnv-1t1c-ndr.txt
../../_static/vpp/performance-changes-3n-dnv-2t2c-ndr.txt
../../_static/vpp/performance-changes-3n-dnv-1t1c-ndr.csv
../../_static/vpp/performance-changes-3n-dnv-2t2c-ndr.csv
../../_static/vpp/performance-changes-3n-dnv-1t1c-pdr.html
../../_static/vpp/performance-changes-3n-dnv-2t2c-pdr.html
../../_static/vpp/performance-changes-3n-dnv-1t1c-pdr.txt
../../_static/vpp/performance-changes-3n-dnv-2t2c-pdr.txt
../../_static/vpp/performance-changes-3n-dnv-1t1c-pdr.csv
../../_static/vpp/performance-changes-3n-dnv-2t2c-pdr.csv
../../_static/vpp/performance-changes-3n-dnv-1t1c-mrr.html
../../_static/vpp/performance-changes-3n-dnv-2t2c-mrr.html
../../_static/vpp/performance-changes-3n-dnv-4t4c-mrr.html
../../_static/vpp/performance-changes-3n-dnv-1t1c-mrr.txt

CSIT REPORT, Release rls2001

ASCII 2t2c MRR comparison
ASCII 4t4c MRR comparison
CSV 1tlc MRR comparison
CSV 2t2c MRR comparison
CSV 4t4c MRR comparison

3n-tsh

NDR Comparison

Comparison tables in HTML, ASCIl and CSV formats:
HTML 1t1c NDR comparison

HTML 2t2c NDR comparison

ASCII 1t1c NDR comparison

ASCII 2t2c NDR comparison

CSV 1t1c NDR comparison

CSV 2t2c NDR comparison

PDR Comparison

Comparison tables in HTML, ASCII and CSV formats:
e HTML 1t1c PDR comparison
e HTML 2t2c PDR comparison

ASCII 1t1c PDR comparison

ASCII 2t2c PDR comparison

CSV 1t1c PDR comparison

CSV 2t2c PDR comparison

MRR Comparison

Comparison tables in HTML, ASCIl and CSV formats:

e HTML 1t1c MRR comparison
e HTML 2t2c MRR comparison
e HTML 4t4c MRR comparison
e ASCII 1t1c MRR comparison
e ASCII 2t2c MRR comparison
e ASCII 4t4c MRR comparison
e CSV 1t1c MRR comparison

e CSV 2t2c MRR comparison

e CSV 4t4c MRR comparison

302 Chapter 2. VPP Performance


../../_static/vpp/performance-changes-3n-dnv-2t2c-mrr.txt
../../_static/vpp/performance-changes-3n-dnv-4t4c-mrr.txt
../../_static/vpp/performance-changes-3n-dnv-1t1c-mrr.csv
../../_static/vpp/performance-changes-3n-dnv-2t2c-mrr.csv
../../_static/vpp/performance-changes-3n-dnv-4t4c-mrr.csv
../../_static/vpp/performance-changes-3n-tsh-1t1c-ndr.html
../../_static/vpp/performance-changes-3n-tsh-2t2c-ndr.html
../../_static/vpp/performance-changes-3n-tsh-1t1c-ndr.txt
../../_static/vpp/performance-changes-3n-tsh-2t2c-ndr.txt
../../_static/vpp/performance-changes-3n-tsh-1t1c-ndr.csv
../../_static/vpp/performance-changes-3n-tsh-2t2c-ndr.csv
../../_static/vpp/performance-changes-3n-tsh-1t1c-pdr.html
../../_static/vpp/performance-changes-3n-tsh-2t2c-pdr.html
../../_static/vpp/performance-changes-3n-tsh-1t1c-pdr.txt
../../_static/vpp/performance-changes-3n-tsh-2t2c-pdr.txt
../../_static/vpp/performance-changes-3n-tsh-1t1c-pdr.csv
../../_static/vpp/performance-changes-3n-tsh-2t2c-pdr.csv
../../_static/vpp/performance-changes-3n-tsh-1t1c-mrr.html
../../_static/vpp/performance-changes-3n-tsh-2t2c-mrr.html
../../_static/vpp/performance-changes-3n-tsh-4t4c-mrr.html
../../_static/vpp/performance-changes-3n-tsh-1t1c-mrr.txt
../../_static/vpp/performance-changes-3n-tsh-2t2c-mrr.txt
../../_static/vpp/performance-changes-3n-tsh-4t4c-mrr.txt
../../_static/vpp/performance-changes-3n-tsh-1t1c-mrr.csv
../../_static/vpp/performance-changes-3n-tsh-2t2c-mrr.csv
../../_static/vpp/performance-changes-3n-tsh-4t4c-mrr.csv

CSIT REPORT, Release rls2001

2.7 Throughput Trending

In addition to reporting throughput comparison between VPP releases, CSIT provides continuous perfor-
mance trending for VPP master branch:

1. Performance Dashboard®’: per VPP test case throughput trend, trend compliance and summary of
detected anomalies.

2. Trending Methodology®8: throughput test metrics, trend calculations and anomaly classification
(progression, regression).

3. VPP Trendline Graphs®?: per VPP build MRR throughput measurements against the trendline with
anomaly highlights and associated CSIT test jobs.

87 https:/docs.fd.io/csit/master/trending/introduction/index.html
88 https:/docs.fd.io/csit/master/trending/methodology/index.html
89 https:/docs.fd.io/csit/master/trending/trending/index.html

2.7. Throughput Trending 303


https://docs.fd.io/csit/master/trending/introduction/index.html
https://docs.fd.io/csit/master/trending/methodology/index.html
https://docs.fd.io/csit/master/trending/trending/index.html

CSIT REPORT, Release rls2001

2.8 Test Environment

2.8.1 Physical Testbeds
FD.io CSIT performance tests are executed in physical testbeds hosted by LF for FD.io project. Two
physical testbed topology types are used:

e 3-Node Topology: Consisting of two servers acting as SUTs (Systems Under Test) and one server as
TG (Traffic Generator), all connected in ring topology.

o 2-Node Topology: Consisting of one server acting as SUTs and one server as TG both connected in
ring topology.

Tested SUT servers are based on a range of processors including Intel Xeon Haswell-SP, Intel Xeon
Skylake-SP, Intel Xeon Cascade Lake-SP, Arm, Intel Atom. More detailed description is provided in Physical
Testbeds (page 4). Tested logical topologies are described in Logical Topologies (page 37).

2.8.2 Server Specifications

Complete technical specifications of compute servers used in CSIT physical testbeds are maintained in
FD.io CSIT repository: FD.io CSIT testbeds - Xeon Cascade Lake??, FD.io CSIT testbeds - Xeon Skylake,
Arm, Atom®! and FD.io CSIT Testbeds - Xeon Haswell”?.

2.8.3 Pre-Test Server Calibration

Number of SUT server sub-system runtime parameters have been identified as impacting data plane
performance tests. Calibrating those parameters is part of FD.io CSIT pre-test activities, and includes
measuring and reporting following:

1. System level core jitter - measure duration of core interrupts by Linux in clock cycles and how often
interrupts happen. Using CPU core jitter tool?S.

2. Memory bandwidth - measure bandwidth with Intel MLC tool?4.
3. Memory latency - measure memory latency with Intel MLC tool.

4. Cache latency at all levels (L1, L2, and Last Level Cache) - measure cache latency with Intel MLC
tool.

Measured values of listed parameters are especially important for repeatable zero packet loss throughput
measurements across multiple system instances. Generally they come useful as a background data for
comparing data plane performance results across disparate servers.

Following sections include measured calibration data for testbeds.

2.8.4 Calibration Data - Skylake

Following sections include sample calibration data measured on s11-t31-sutl server running in one of
the Intel Xeon Skylake testbeds as specified in FD.io CSIT testbeds - Xeon Skylake, Arm, Atom?>.

Calibration data obtained from all other servers in Skylake testbeds shows the same or similar values.

90 https://git.fd.io/csit/tree/docs/lab/testbeds_sm_clx_hw_bios_cfg.md?h=rls2001
91 https://git.fd.io/csit/tree/docs/lab/testbeds_sm_skx_hw_bios_cfg.md?h=rls2001
92 https://git.fd.io/csit/tree/docs/lab/testbeds_ucs_hsw_hw_bios_cfg.md?h=rls2001
93 https://git.fd.io/pma_tools/tree/jitter

94 https://software.intel.com/en-us/articles/intelr-memory-latency-checker

95 https://git.fd.io/csit/tree/docs/lab/testbeds_sm_skx_hw_bios_cfg.md?h=rls2001

304 Chapter 2. VPP Performance


https://git.fd.io/csit/tree/docs/lab/testbeds_sm_clx_hw_bios_cfg.md?h=rls2001
https://git.fd.io/csit/tree/docs/lab/testbeds_sm_skx_hw_bios_cfg.md?h=rls2001
https://git.fd.io/csit/tree/docs/lab/testbeds_sm_skx_hw_bios_cfg.md?h=rls2001
https://git.fd.io/csit/tree/docs/lab/testbeds_ucs_hsw_hw_bios_cfg.md?h=rls2001
https://git.fd.io/pma_tools/tree/jitter
https://software.intel.com/en-us/articles/intelr-memory-latency-checker
https://git.fd.io/csit/tree/docs/lab/testbeds_sm_skx_hw_bios_cfg.md?h=rls2001

CSIT REPORT, Release rls2001

Linux cmdline

$ cat /proc/cmdline

BOOT_IMAGE=/boot/vmlinuz-4.15.0-72-generic root=UUID=e05120bb-7127-43db-bl1e3-ab66edd4c43bd ro.
—isolcpus=1-27,29-55,57-83,85-111 nohz_full=1-27,29-55,57-83,85-111 rcu_nocbs=1-27,29-55,57-83, 85~
—111 numa_balancing=disable intel_pstate=disable intel_iommu=on iommu=pt nmi_watchdog=0 audit=0._
—snosoftlockup processor.max_cstate=1 intel_idle.max_cstate=1 hpet=disable tsc=reliable mce=off_
—console=tty@ console=ttySe@,115200n8

Linux uname

$ uname -a
Linux s3-t21-sutl 4.15.0-72-generic #81-Ubuntu SMP Tue Nov 26 12:20:02 UTC 2019 x86_64 x86_64 x86_
—64 GNU/Linux

System-level Core Jitter

$ sudo taskset -c 3 /home/testuser/pma_tools/jitter/jitter -i 20

Linux Jitter testing program version 1.8

Iterations=20

The pragram will execute a dummy function 80000 times

Display is updated every 20000 displayUpdate intervals

Timings are in CPU Core cycles

Inst_Min: Minimum Excution time during the display update interval(default is ~1 second)
Inst_Max: Maximum Excution time during the display update interval(default is ~1 second)
Inst_jitter: Jitter in the Excution time during rhe display update interval. This is the value of._
—interest

last_Exec: The Excution time of last iteration just before the display update
Abs_Min: Absolute Minimum Excution time since the program started or statistics were reset
Abs_Max: Absolute Maximum Excution time since the program started or statistics were reset
tmp: Cumulative value calcualted by the dummy function
Interval: Time interval between the display updates in Core Cycles
Sample No: Sample number
Inst_Min Inst_Max Inst_jitter last_Exec Abs_min Abs_max tmp Interval o
—Sample No
160022 171330 11308 160022 160022 171330 2538733568 3204142750 -
<~>’|
160022 167294 7272 160026 160022 171330 328335360 3203873548 -
2
160022 167560 7538 160026 160022 171330 2412904448 3203878736 .
3
160022 169000 8978 160024 160022 171330 202506240 3203864588 -
—4
160022 166572 6550 160026 160022 171330 2287075328 3203866224 -
-5
160022 167460 7438 160026 160022 171330 76677120 3203854632 .
—6
160022 168134 8112 160024 160022 171330 2161246208 3203874674 -
“ )7
160022 169094 9072 160022 160022 171330 4245815296 3203878798 -
-8
160022 172460 12438 160024 160022 172460 2035417088 3204112010 -
—9
160022 167862 7840 160030 160022 172460 4119986176 3203856800 -
10
160022 168398 8376 160024 160022 172460 1909587968 3203854192 -

=11

(continues on next page)

2.8. Test Environment 305




CSIT REPORT, Release rls2001

(continued from previous page)

160022 167548 7526 160024 160022 172460 3994157056 3203847442 -
:>12160022 167562 7540 160026 160022 172460 1783758848 3203862936 -
(413160022 167604 7582 160024 160022 172460 3868327936 3203859346 -
‘H14160022 168262 8240 160024 160022 172460 1657929728 3203851120 -
(>15160022 169700 9678 160024 160022 172460 3742498816 3203877690 -
(%16160022 170476 10454 160026 160022 172460 1532100608 3204088480 .
:H17160022 167798 7776 160024 160022 172460 3616669696 3203862072 -
H18160022 166540 6518 160024 160022 172460 1406271488 3203836904 -
(%19160922 167516 7494 160024 160022 172460 3490840576 3203848120 .
<20

Memory Bandwidth

$ sudo /home/testuser/mlc --bandwidth_matrix
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --bandwidth_matrix

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes
Measuring Memory Bandwidths between nodes within system

Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)

Using all the threads from each core if Hyper-threading is enabled

Using Read-only traffic type

Numa node

Numa node 0 1
0 107947.7 50951.5
1 50834.6 108183.4

$ sudo /home/testuser/mlc --peak_injection_bandwidth
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --peak_injection_bandwidth

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes

Measuring Peak Injection Memory Bandwidths for the system
Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)

Using all the threads from each core if Hyper-threading is enabled
Using traffic with the following read-write ratios

ALL Reads : 215733.9

3:1 Reads-Writes : 182141.9

2:1 Reads-Writes : 178615.7

1:1 Reads-Writes : 149911.3

Stream-triad like: 159533.6

$ sudo /home/testuser/mlc --max_bandwidth
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --max_bandwidth

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes

Measuring Maximum Memory Bandwidths for the system

(continues on next page)

306 Chapter 2. VPP Performance




CSIT REPORT, Release rls2001

(continued from previous page)

Will take several minutes to complete as multiple injection rates will be tried to get the best.
—bandwidth

Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)

Using all the threads from each core if Hyper-threading is enabled

Using traffic with the following read-write ratios

ALL Reads ;. 216875.73

3:1 Reads-Writes : 182615.14

2:1 Reads-Writes : 178745.67

1:1 Reads-Writes : 149485.27

Stream-triad like: 180057.87

Memory Latency

$ sudo /home/testuser/mlc --latency_matrix
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --latency_matrix

Using buffer size of 2000.000MB
Measuring idle latencies (in ns)...

Numa node

Numa node 0 1
0 81.4 131.1
1 131.1 81.3

$ sudo /home/testuser/mlc --idle_latency
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --idle_latency

Using buffer size of 2000.000MB
Each iteration took 202.0 core clocks ( 80.8 ns)

$ sudo /home/testuser/mlc --loaded_latency
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --loaded_latency

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes

Measuring Loaded Latencies for the system

Using all the threads from each core if Hyper-threading is enabled
Using Read-only traffic type

Inject Latency Bandwidth

Delay (ns) MB/sec

00000 282.66  215712.
00002 282.14  215757.
00008 280.21 215868.
00015 279.20  216313.
00050 275.25  216643.
00100 227.05  215075.
00200 121.92  160242.
00300 101.21 111587.
00400  95.48 85019.
00500  94.46 68717.
00700  92.27 49742.
01000 91.03 35264.
01300 90.11 27396.
01700  89.34 21178.
02500 90.15 14672.

0N W OoONWNDOOSON—= I~

(continues on next page)

2.8. Test Environment 307




CSIT REPORT, Release rls2001

(continued from previous page)

03500 89.00 10715.7
05000 82.00 7788.2
09000  81.46 4684.0
20000 81.40 2541.9

L1/L2/LLC Latency

$ sudo /home/testuser/mlc --c2c_latency
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --c2c_latency

Measuring cache-to-cache transfer latency (in ns)...

Local Socket L2->L2 HIT latency 53.7

Local Socket L2->L2 HITM latency 53.7

Remote Socket L2->L2 HITM latency (data address homed in writer socket)
Reader Numa Node

Writer Numa Node 0 1
Q - 113.9
1 113.9 -

Remote Socket L2->L2 HITM latency (data address homed in reader socket)
Reader Numa Node

Writer Numa Node %} 1
Q - 177.9
1 177.6 -

Spectre and Meltdown Checks

Following section displays the output of a running shell script to tell if system is vulnerable against the
several “speculative execution” CVEs that were made public in 2018. Script is available on Spectre &
Meltdown Checker Github?®.

Spectre and Meltdown mitigation detection tool v@.43

awk: cannot open bash (No such file or directory)

Checking for vulnerabilities on current system

Kernel is Linux 4.15.0-72-generic #81-Ubuntu SMP Tue Nov 26 12:20:02 UTC 2019 x86_64
CPU is Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz

Hardware check
* Hardware support (CPU microcode) for mitigation techniques
* Indirect Branch Restricted Speculation (IBRS)
* SPEC_CTRL MSR is available: YES
* CPU indicates IBRS capability: YES (SPEC_CTRL feature bit)
* Indirect Branch Prediction Barrier (IBPB)
* PRED_CMD MSR is available: YES
* CPU indicates IBPB capability: YES (SPEC_CTRL feature bit)
* Single Thread Indirect Branch Predictors (STIBP)
* SPEC_CTRL MSR is available: YES
* CPU indicates STIBP capability: YES (Intel STIBP feature bit)
* Speculative Store Bypass Disable (SSBD)
* CPU indicates SSBD capability: YES (Intel SSBD)
* L1 data cache invalidation
* FLUSH_CMD MSR is available: YES
* CPU indicates L1D flush capability: YES (L1D flush feature bit)
* Microarchitectural Data Sampling
* VERW instruction is available: YES (MD_CLEAR feature bit)

(continues on next page)

96 https://github.com/speed47/spectre-meltdown-checker

308 Chapter 2. VPP Performance



https://github.com/speed47/spectre-meltdown-checker
https://github.com/speed47/spectre-meltdown-checker

CSIT REPORT, Release rls2001

(continued from previous page)

* Enhanced IBRS (IBRS_ALL)

* CPU indicates ARCH_CAPABILITIES MSR availability: NO

* ARCH_CAPABILITIES MSR advertises IBRS_ALL capability: NO

CPU explicitly indicates not being vulnerable to Meltdown/L1TF (RDCL_NO): NO

CPU explicitly indicates not being vulnerable to Variant 4 (SSB_NO): NO

CPU/Hypervisor indicates L1D flushing is not necessary on this system: NO

Hypervisor indicates host CPU might be vulnerable to RSB underflow (RSBA): NO

CPU explicitly indicates not being vulnerable to Microarchitectural Data Sampling (MDS_NO): NO
CPU explicitly indicates not being vulnerable to TSX Asynchronous Abort (TAA_NO): NO

CPU explicitly indicates not being vulnerable to iTLB Multihit (PSCHANGE_MSC_NO): NO

CPU explicitly indicates having MSR for TSX control (TSX_CTRL_MSR): NO

CPU supports Transactional Synchronization Extensions (TSX): YES (RTM feature bit)

CPU supports Software Guard Extensions (SGX): NO

CPU microcode is known to cause stability problems: NO (model 0x55 family 0x6 stepping 0x4 ucode.
,0x2000064 cpuid 0x50654)

* CPU microcode is the latest known available version: awk: cannot open bash (No such file or_
—directory)

UNKNOWN (latest microcode version for your CPU model is unknown)

* CPU vulnerability to the speculative execution attack variants

Vulnerable to CVE-2017-5753 (Spectre Variant 1, bounds check bypass): YES

Vulnerable to CVE-2017-5715 (Spectre Variant 2, branch target injection): YES

Vulnerable to CVE-2017-5754 (Variant 3, Meltdown, rogue data cache load): YES

Vulnerable to CVE-2018-3640 (Variant 3a, rogue system register read): YES

Vulnerable to CVE-2018-3639 (Variant 4, speculative store bypass): YES

Vulnerable to CVE-2018-3615 (Foreshadow (SGX), L1 terminal fault): NO

Vulnerable to CVE-2018-3620 (Foreshadow-NG (0S), L1 terminal fault): YES

Vulnerable to CVE-2018-3646 (Foreshadow-NG (VMM), L1 terminal fault): YES

Vulnerable to CVE-2018-12126 (Fallout, microarchitectural store buffer data sampling (MSBDS)):.
—YES

* Vulnerable to CVE-2018-12130 (ZombielLoad, microarchitectural fill buffer data sampling (MFBDS)):.
—YES

* Vulnerable to CVE-2018-12127 (RIDL, microarchitectural load port data sampling (MLPDS)): YES

* Vulnerable to CVE-2019-11091 (RIDL, microarchitectural data sampling uncacheable memory..
—(MDSUM)): YES

* Vulnerable to CVE-2019-11135 (ZombielLoad V2, TSX Asynchronous Abort (TAA)): YES

* Vulnerable to CVE-2018-12207 (No eXcuses, iTLB Multihit, machine check exception on page size.
—changes (MCEPSC)): YES

X% % X % X % X %X X% X%

X% % %X % X % X %

CVE-2017-5753 aka Spectre Variant 1, bounds check bypass

* Mitigated according to the /sys interface: YES (Mitigation: usercopy/swapgs barriers and __user.
—pointer sanitization)

* Kernel has array_index_mask_nospec: YES (1 occurrence(s) found of x86 64 bits array_index_mask_
—nospec())

* Kernel has the Red Hat/Ubuntu patch: NO

* Kernel has mask_nospec64 (armé64): NO

> STATUS: NOT VULNERABLE (Mitigation: usercopy/swapgs barriers and __user pointer sanitization)

CVE-2017-5715 aka Spectre Variant 2, branch target injection
* Mitigated according to the /sys interface: YES (Mitigation: Full generic retpoline, IBPB:._
—conditional, IBRS_FW, STIBP: conditional, RSB filling)
* Mitigation 1
* Kernel is compiled with IBRS support: YES
* IBRS enabled and active: YES (for firmware code only)
* Kernel is compiled with IBPB support: YES
* IBPB enabled and active: YES
* Mitigation 2
* Kernel has branch predictor hardening (arm): NO
* Kernel compiled with retpoline option: YES
* Kernel compiled with a retpoline-aware compiler: YES (kernel reports full retpoline.
—compilation)
* Kernel supports RSB filling: YES

(continues on next page)

2.8. Test Environment 309




CSIT REPORT, Release rls2001

(continued from previous page)

> STATUS: NOT VULNERABLE (Full retpoline + IBPB are mitigating the vulnerability)

CVE-2017-5754 aka Variant 3, Meltdown, rogue data cache load
* Mitigated according to the /sys interface: YES (Mitigation: PTI)
* Kernel supports Page Table Isolation (PTI): YES
* PTI enabled and active: YES
* Reduced performance impact of PTI: YES (CPU supports INVPCID, performance impact of PTI will be_
—greatly reduced)
* Running as a Xen PV DomU: NO
> STATUS: NOT VULNERABLE (Mitigation: PTI)

CVE-2018-3640 aka Variant 3a, rogue system register read
* CPU microcode mitigates the vulnerability: YES
> STATUS: NOT VULNERABLE (your CPU microcode mitigates the vulnerability)

CVE-2018-3639 aka Variant 4, speculative store bypass

* Mitigated according to the /sys interface: YES (Mitigation: Speculative Store Bypass disabled via.
—prctl and seccomp)

* Kernel supports disabling speculative store bypass (SSB): YES (found in /proc/self/status)

* SSB mitigation is enabled and active: YES (per-thread through prctl)

* SSB mitigation currently active for selected processes: YES (systemd-journald systemd-logind.
—ssystemd-networkd systemd-resolved systemd-timesyncd systemd-udevd)

> STATUS: NOT VULNERABLE (Mitigation: Speculative Store Bypass disabled via prctl and seccomp)

CVE-2018-3615 aka Foreshadow (SGX), L1 terminal fault
* CPU microcode mitigates the vulnerability: N/A
> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-3620 aka Foreshadow-NG (0S), L1 terminal fault

* Mitigated according to the /sys interface: YES (Mitigation: PTE Inversion; VMX: conditional cache._
—flushes, SMT vulnerable)

* Kernel supports PTE inversion: YES (found in kernel image)

* PTE inversion enabled and active: YES

> STATUS: NOT VULNERABLE (Mitigation: PTE Inversion; VMX: conditional cache flushes, SMT vulnerable)

CVE-2018-3646 aka Foreshadow-NG (VMM), L1 terminal fault
* Information from the /sys interface: Mitigation: PTE Inversion; VMX: conditional cache flushes,._.
—SMT vulnerable
* This system is a host running a hypervisor: NO
* Mitigation 1 (KVM)
* EPT is disabled: NO
* Mitigation 2
* L1D flush is supported by kernel: YES (found flush_11d in /proc/cpuinfo)
% L1D flush enabled: YES (conditional flushes)
* Hardware-backed L1D flush supported: YES (performance impact of the mitigation will be greatly.
—reduced)
* Hyper-Threading (SMT) is enabled: YES
> STATUS: NOT VULNERABLE (this system is not running a hypervisor)

CVE-2018-12126 aka Fallout, microarchitectural store buffer data sampling (MSBDS)

Mitigated according to the /sys interface: YES (Mitigation: Clear CPU buffers; SMT vulnerable)
* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)

* Kernel mitigation is enabled and active: YES

* SMT is either mitigated or disabled: NO

> STATUS: NOT VULNERABLE (Your microcode and kernel are both up to date for this mitigation, and_
—mitigation is enabled)

*

CVE-2018-12130 aka ZombielLoad, microarchitectural fill buffer data sampling (MFBDS)

* Mitigated according to the /sys interface: YES (Mitigation: Clear CPU buffers; SMT vulnerable)
* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)

* Kernel mitigation is enabled and active: YES

(continues on next page)

310 Chapter 2. VPP Performance




CSIT REPORT, Release rls2001

(continued from previous page)

* SMT is either mitigated or disabled: NO
> STATUS: NOT VULNERABLE (Your microcode and kernel are both up to date for this mitigation, and.
—mitigation is enabled)

CVE-2018-12127 aka RIDL, microarchitectural load port data sampling (MLPDS)

Mitigated according to the /sys interface: YES (Mitigation: Clear CPU buffers; SMT vulnerable)
* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)

* Kernel mitigation is enabled and active: YES

* SMT is either mitigated or disabled: NO

> STATUS: NOT VULNERABLE (Your microcode and kernel are both up to date for this mitigation, and.
—mitigation is enabled)

>*

CVE-2019-11091 aka RIDL, microarchitectural data sampling uncacheable memory (MDSUM)

* Mitigated according to the /sys interface: YES (Mitigation: Clear CPU buffers; SMT vulnerable)
* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)

* Kernel mitigation is enabled and active: YES

* SMT is either mitigated or disabled: NO

> STATUS: NOT VULNERABLE (Your microcode and kernel are both up to date for this mitigation, and.
—mitigation is enabled)

CVE-2019-11135 aka ZombielLoad V2, TSX Asynchronous Abort (TAA)

* Mitigated according to the /sys interface: YES (Mitigation: Clear CPU buffers; SMT vulnerable)
* TAA mitigation is supported by kernel: YES (found tsx_async_abort in kernel image)

* TAA mitigation enabled and active: YES (Mitigation: Clear CPU buffers; SMT vulnerable)

> STATUS: NOT VULNERABLE (Mitigation: Clear CPU buffers; SMT vulnerable)

CVE-2018-12207 aka No eXcuses, iTLB Multihit, machine check exception on page size changes (MCEPSC)
Mitigated according to the /sys interface: YES (KVM: Mitigation: Split huge pages)

This system is a host running a hypervisor: NO

iTLB Multihit mitigation is supported by kernel: YES (found itlb_multihit in kernel image)

iTLB Multihit mitigation enabled and active: YES (KVM: Mitigation: Split huge pages)

STATUS: NOT VULNERABLE (this system is not running a hypervisor)

*

Voo% %X %

> SUMMARY: CVE-2017-5753:0K CVE-2017-5715:0K CVE-2017-5754:0K CVE-2018-3640:0K CVE-2018-3639:0K CVE-
—2018-3615:0K CVE-2018-3620:0K CVE-2018-3646:0K CVE-2018-12126:0K CVE-2018-12130:0K CVE-2018-
—12127:0K CVE-2019-11091:0K CVE-2019-11135:0K CVE-2018-12207:0K

2.8.5 Calibration Data - Cascade Lake

Following sections include sample calibration data measured on s32-t27-sut1 server running in one of
the Intel Xeon Skylake testbeds as specified in FD.io CSIT testbeds - Xeon Cascade Lake?”.

Calibration data obtained from all other servers in Cascade Lake testbeds shows the same or similar
values.

Linux cmdline

$ cat /proc/cmdline

BOOT_IMAGE=/boot/vmlinuz-4.15.0-72-generic root=UUID=1d@3969e-a2a0@-41b2-a97e-1cc171b07e88 ro._
—isolcpus=1-23,25-47,49-71,73-95 nohz_full=1-23,25-47,49-71,73-95 rcu_nocbs=1-23,25-47,49-71,73-95_
—numa_balancing=disable intel_pstate=disable intel_iommu=on iommu=pt nmi_watchdog=0 audit=0._
—nosoftlockup processor.max_cstate=1 intel_idle.max_cstate=1 hpet=disable tsc=reliable mce=off_
—console=tty@ console=ttyS0,115200n8

97 https://git.fd.io/csit/tree/docs/lab/testbeds_sm_clx_hw_bios_cfg.md?h=rls2001

2.8. Test Environment 311



https://git.fd.io/csit/tree/docs/lab/testbeds_sm_clx_hw_bios_cfg.md?h=rls2001

CSIT REPORT, Release rls2001

Linux uname

$ uname -a
Linux s32-t27-sutl 4.15.0-72-generic #81-Ubuntu SMP Tue Nov 26 12:20:02 UTC 2019 x86_64 x86_64 x86_
—64 GNU/Linux

System-level Core Jitter

$ sudo taskset -c 3 /home/testuser/pma_tools/jitter/jitter -i 30

Linux Jitter testing program version 1.9

Iterations=30

The pragram will execute a dummy function 80000 times

Display is updated every 20000 displayUpdate intervals

Thread affinity will be set to core_id:7

Timings are in CPU Core cycles

Inst_Min: Minimum Excution time during the display update interval(default is ~1 second)
Inst_Max: Maximum Excution time during the display update interval(default is ~1 second)
Inst_jitter: Jitter in the Excution time during rhe display update interval. This is the value of._
—interest

last_Exec: The Excution time of last iteration just before the display update

Abs_Min: Absolute Minimum Excution time since the program started or statistics were reset
Abs_Max: Absolute Maximum Excution time since the program started or statistics were reset
tmp: Cumulative value calcualted by the dummy function

Interval: Time interval between the display updates in Core Cycles

Sample No: Sample number

Inst_Min,Inst_Max,Inst_jitter,last_Exec,Abs_min,Abs_max,tmp,Interval,Sample No
160022,167590,7568,160026,160022,167590,2057568256,3203711852,1
160022,170628,10606,160024,160022,170628,4079222784,3204010824,2
160022,169824,9802,160024,160022,170628,1805910016,3203812064, 3
160022,168832,8810,160030,160022,170628,3827564544,3203792594,4
160022,168248,8226,160026,160022,170628,1554251776,3203765920,5
160022,167834,7812,160028,160022,170628,3575906304,3203761114,6
160022,167442,7420,160024,160022,170628,1302593536,3203769250,7
160022,169120,9098,160028,160022,170628,3324248064,3203853340,8
160022,170710,10688,160024,160022,170710,1050935296,3203985878,9
160022,167952,7930,160024,160022,170710,3072589824,3203733756,10
160022,168314,8292,160030,160022,170710,799277056,3203741152,11
160022,169672,9650,160024,160022,170710,2820931584,3203739910,12
160022,168684,8662,160024,160022,170710,547618816,3203727336,13
160022,168246,8224,160024,160022,170710,2569273344,3203739052,14
160022,168134,8112,160030,160022,170710,295960576,3203735874,15
160022,170230,10208,160024,160022,170710,2317615104,3203996356,16
160022,167190,7168,160024,160022,170710,44302336,3203713628,17
160022,167304,7282,160024,160022,170710,2065956864,3203717954,18
160022,167500,7478,160024,160022,170710,4087611392,3203706674,19
160022,167302,7280,160024,160022,170710,1814298624,3203726452,20
160022,167266,7244,160024,160022,170710,3835953152,3203702804,21
160022,167820,7798,160022,160022,170710,1562640384,3203719138,22
160022,168100,8078,160024,160022,170710,3584294912, 3203716636, 23
160022,170408,10386,160024,160022,170710,1310982144,3203946958, 24
160022,167276,7254,160024,160022,170710,3332636672,3203706236, 25
160022,167052,7030,160024,160022,170710, 1059323904, 3203696444 , 26
160022,170322,10300,160024,160022,170710,3080978432,3203747514,27
160022,167332,7310,160024,160022,170710,807665664,3203716210,28
160022,167426,7404,160026,160022,170710,2829320192,3203700630, 29
160022,168840,8818,160024,160022,170710,556007424,3203727658,30

312 Chapter 2. VPP Performance




CSIT REPORT, Release rls2001

Memory Bandwidth

$ sudo /home/testuser/mlc --bandwidth_matrix
Intel(R) Memory Latency Checker - v3.7
Command line parameters: --bandwidth_matrix

Using buffer size of 100.000MiB/thread for reads and an additional 100.000MiB/thread for writes
Measuring Memory Bandwidths between nodes within system

Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)

Using all the threads from each core if Hyper-threading is enabled

Using Read-only traffic type

Numa node
Numa node 0 1
0 122097.7 51327.9
1 51309.2 122005.5

$ sudo /home/testuser/mlc --peak_injection_bandwidth
Intel(R) Memory Latency Checker - v3.7
Command line parameters: --peak_injection_bandwidth

Using buffer size of 100.000MiB/thread for reads and an additional 100.000MiB/thread for writes

Measuring Peak Injection Memory Bandwidths for the system
Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)

Using all the threads from each core if Hyper-threading is enabled
Using traffic with the following read-write ratios

ALL Reads : 243159.4
3:1 Reads-Writes : 219132.5
2:1 Reads-Writes : 216603.1
1:1 Reads-Writes : 203713.0
Stream-triad like: 193790.8

$ sudo /home/testuser/mlc --max_bandwidth
Intel(R) Memory Latency Checker - v3.7
Command line parameters: --max_bandwidth

Using buffer size of 100.000MiB/thread for reads and an additional 100.000MiB/thread for writes

Measuring Maximum Memory Bandwidths for the system

Will take several minutes to complete as multiple injection rates will be tried to get the best._
—bandwidth

Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)

Using all the threads from each core if Hyper-threading is enabled

Using traffic with the following read-write ratios

ALL Reads : 244114 .27
3:1 Reads-Writes : 219441.97
2:1 Reads-Writes : 216603.72
1:1 Reads-Writes : 203679.09
Stream-triad like: 214902.80

Memory Latency

$ sudo /home/testuser/mlc --latency_matrix
Intel(R) Memory Latency Checker - v3.7
Command line parameters: --latency_matrix

Using buffer size of 2000.000MiB
Measuring idle latencies (in ns)...
Numa node

(continues on next page)

2.8. Test Environment 313




CSIT REPORT, Release rls2001

(continued from previous page)

Numa node 0 1
0 81.2 130.2
1 130.2 81.1

$ sudo /home/testuser/mlc --idle_latency
Intel(R) Memory Latency Checker - v3.7
Command line parameters: --idle_latency

Using buffer size of 2000.000MiB
Each iteration took 186.1 core clocks ( 80.9 ns)

$ sudo /home/testuser/mlc --loaded_latency
Intel(R) Memory Latency Checker - v3.7
Command line parameters: --loaded_latency

Using buffer size of 100.000MiB/thread for reads and an additional 100.000MiB/thread for writes

Measuring Loaded Latencies for the system

Using all the threads from each core if Hyper-threading is enabled
Using Read-only traffic type

Inject Latency Bandwidth

Delay (ns) MB/sec

00000 233.86  243421.
00002 230.61 243544.
00008 232.56  243394.
00015 229.52  244076.
00050 225.82  244290.
00100 161.65 236744.
00200 100.63  133844.
00300 96.84 90548.
00400  95.71 68504.
00500  95.68 55139.
00700  88.77 39798.
01000 84.74 28200.
01300 83.08 21915.
01700  82.27 16969.
02500 81.66 11810.
03500  81.98 8662.
05000  81.48 6306.
09000 81.17 3857.
20000 80.19 2179.

O 00 WO WUl — AhO WNOS WO O U1 = O

L1/L2/LLC Latency

$ sudo /home/testuser/mlc --c2c_latency
Intel(R) Memory Latency Checker - v3.7
Command line parameters: --c2c_latency

Measuring cache-to-cache transfer latency (in ns)...

Local Socket L2->L2 HIT latency 55.5

Local Socket L2->L2 HITM latency 55.6

Remote Socket L2->L2 HITM latency (data address homed in writer socket)
Reader Numa Node

Writer Numa Node 0 1
Q - 115.6
1 115.6 -

Remote Socket L2->L2 HITM latency (data address homed in reader socket)

(continues on next page)

314 Chapter 2. VPP Performance




CSIT REPORT, Release rls2001

(continued from previous page)

Reader Numa Node

Writer Numa Node 0 1
Q - 178.2
1 178.4 -

Spectre and Meltdown Checks

Following section displays the output of a running shell script to tell if system is vulnerable against the
several speculative execution CVEs that were made public in 2018. Script is available on Spectre & Melt-
down Checker Github?8.

Spectre and Meltdown mitigation detection tool v@.43

awk: fatal: cannot open file ‘bash for reading (No such file or directory)

Checking for vulnerabilities on current system

Kernel is Linux 4.15.0-72-generic #81-Ubuntu SMP Tue Nov 26 12:20:02 UTC 2019 x86_64
CPU is Intel(R) Xeon(R) Platinum 8280 CPU @ 2.70GHz

Hardware check
* Hardware support (CPU microcode) for mitigation techniques
* Indirect Branch Restricted Speculation (IBRS)
* SPEC_CTRL MSR is available: YES
* CPU indicates IBRS capability: YES (SPEC_CTRL feature bit)
* Indirect Branch Prediction Barrier (IBPB)
* PRED_CMD MSR is available: YES
* CPU indicates IBPB capability: YES (SPEC_CTRL feature bit)
* Single Thread Indirect Branch Predictors (STIBP)
* SPEC_CTRL MSR is available: YES
* CPU indicates STIBP capability: YES (Intel STIBP feature bit)
* Speculative Store Bypass Disable (SSBD)
* CPU indicates SSBD capability: YES (Intel SSBD)
* L1 data cache invalidation
* FLUSH_CMD MSR is available: YES
* CPU indicates L1D flush capability: YES (L1D flush feature bit)
* Microarchitectural Data Sampling
* VERW instruction is available: YES (MD_CLEAR feature bit)
* Enhanced IBRS (IBRS_ALL)
* CPU indicates ARCH_CAPABILITIES MSR availability: YES
* ARCH_CAPABILITIES MSR advertises IBRS_ALL capability: YES
CPU explicitly indicates not being vulnerable to Meltdown/L1TF (RDCL_NO): YES
CPU explicitly indicates not being vulnerable to Variant 4 (SSB_NO): NO
CPU/Hypervisor indicates L1D flushing is not necessary on this system: YES
Hypervisor indicates host CPU might be vulnerable to RSB underflow (RSBA): NO
CPU explicitly indicates not being vulnerable to Microarchitectural Data Sampling (MDS_NO): YES
CPU explicitly indicates not being vulnerable to TSX Asynchronous Abort (TAA_NO): NO
CPU explicitly indicates not being vulnerable to iTLB Multihit (PSCHANGE_MSC_NO): NO
CPU explicitly indicates having MSR for TSX control (TSX_CTRL_MSR): YES
* TSX_CTRL MSR indicates TSX RTM is disabled: YES
* TSX_CTRL MSR indicates TSX CPUID bit is cleared: YES
* CPU supports Transactional Synchronization Extensions (TSX): NO
* CPU supports Software Guard Extensions (SGX): NO
* CPU microcode is known to cause stability problems: NO (model 0x55 family @x6 stepping 0x7.
—ucode 0x500002c cpuid 0x50657)
* CPU microcode is the latest known available version: awk: fatal: cannot open file ‘bash for._
—reading (No such file or directory)
UNKNOWN (latest microcode version for your CPU model is unknown)
* CPU vulnerability to the speculative execution attack variants
* Vulnerable to CVE-2017-5753 (Spectre Variant 1, bounds check bypass): YES

X % % X %X %X %X %

(continues on next page)

98 https://github.com/speed47/spectre-meltdown-checker

2.8. Test Environment 315



https://github.com/speed47/spectre-meltdown-checker
https://github.com/speed47/spectre-meltdown-checker

CSIT REPORT, Release rls2001

(continued from previous page)

Vulnerable to CVE-2017-5715 (Spectre Variant 2, branch target injection): YES

Vulnerable to CVE-2017-5754 (Variant 3, Meltdown, rogue data cache load): NO

Vulnerable to CVE-2018-3640 (Variant 3a, rogue system register read): YES

Vulnerable to CVE-2018-3639 (Variant 4, speculative store bypass): YES

Vulnerable to CVE-2018-3615 (Foreshadow (SGX), L1 terminal fault): NO

Vulnerable to CVE-2018-3620 (Foreshadow-NG (0S), L1 terminal fault): YES

Vulnerable to CVE-2018-3646 (Foreshadow-NG (VMM), L1 terminal fault): YES

Vulnerable to CVE-2018-12126 (Fallout, microarchitectural store buffer data sampling (MSBDS)):.

¥ % %X %X %k X % %k

—NO
* Vulnerable to CVE-2018-12130 (ZombielLoad, microarchitectural fill buffer data sampling.
< (MFBDS)): NO
* Vulnerable to CVE-2018-12127 (RIDL, microarchitectural load port data sampling (MLPDS)): NO
* Vulnerable to CVE-2019-11091 (RIDL, microarchitectural data sampling uncacheable memory..
— (MDSUM)): NO
* Vulnerable to CVE-2019-11135 (ZombieLoad V2, TSX Asynchronous Abort (TAA)): NO
* Vulnerable to CVE-2018-12207 (No eXcuses, iTLB Multihit, machine check exception on page size.
—changes (MCEPSC)): YES

CVE-2017-5753 aka Spectre Variant 1, bounds check bypass

* Mitigated according to the /sys interface: YES (Mitigation: usercopy/swapgs barriers and __user.
—pointer sanitization)

* Kernel has array_index_mask_nospec: YES (1 occurrence(s) found of x86 64 bits array_index_mask_
—nospec())

* Kernel has the Red Hat/Ubuntu patch: NO

* Kernel has mask_nospec64 (arm64): NO

> STATUS: NOT VULNERABLE (Mitigation: usercopy/swapgs barriers and __user pointer sanitization)

CVE-2017-5715 aka Spectre Variant 2, branch target injection
* Mitigated according to the /sys interface: YES (Mitigation: Enhanced IBRS, IBPB: conditional, RSB.
—filling)
* Mitigation 1
* Kernel is compiled with IBRS support: YES
* IBRS enabled and active: YES (Enhanced flavor, performance impact will be greatly reduced)
* Kernel is compiled with IBPB support: YES
* IBPB enabled and active: YES
* Mitigation 2
* Kernel has branch predictor hardening (arm): NO
* Kernel compiled with retpoline option: YES
* Kernel supports RSB filling: YES
> STATUS: NOT VULNERABLE (Enhanced IBRS + IBPB are mitigating the vulnerability)

CVE-2017-5754 aka Variant 3, Meltdown, rogue data cache load
* Mitigated according to the /sys interface: YES (Not affected)
* Kernel supports Page Table Isolation (PTI): YES
* PTI enabled and active: UNKNOWN (dmesg truncated, please reboot and relaunch this script)
* Reduced performance impact of PTI: YES (CPU supports INVPCID, performance impact of PTI will be.
—greatly reduced)
* Running as a Xen PV DomU: NO
> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-3640 aka Variant 3a, rogue system register read
* CPU microcode mitigates the vulnerability: YES
> STATUS: NOT VULNERABLE (your CPU microcode mitigates the vulnerability)

CVE-2018-3639 aka Variant 4, speculative store bypass

* Mitigated according to the /sys interface: YES (Mitigation: Speculative Store Bypass disabled via.
—prctl and seccomp)

* Kernel supports disabling speculative store bypass (SSB): YES (found in /proc/self/status)

* SSB mitigation is enabled and active: YES (per-thread through prctl)

* SSB mitigation currently active for selected processes: YES (systemd-journald systemd-logind.
—systemd-networkd systemd-resolved systemd-timesyncd systemd-udevd)

(continues on next page)

316 Chapter 2. VPP Performance




CSIT REPORT, Release rls2001

(continued from previous page)

> STATUS: NOT VULNERABLE (Mitigation: Speculative Store Bypass disabled via prctl and seccomp)

CVE-2018-3615 aka Foreshadow (SGX), L1 terminal fault
* CPU microcode mitigates the vulnerability: N/A
> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-3620 aka Foreshadow-NG (0S), L1 terminal fault
Mitigated according to the /sys interface: YES (Not affected)
* Kernel supports PTE inversion: YES (found in kernel image)

* PTE inversion enabled and active: NO

> STATUS: NOT VULNERABLE (Not affected)

*

CVE-2018-3646 aka Foreshadow-NG (VMM), L1 terminal fault
* Information from the /sys interface: Not affected
* This system is a host running a hypervisor: NO
* Mitigation 1 (KVM)
* EPT is disabled: NO
* Mitigation 2
* L1D flush is supported by kernel: YES (found flush_l1d in /proc/cpuinfo)
* L1D flush enabled: NO
* Hardware-backed L1D flush supported: YES (performance impact of the mitigation will be greatly.
—reduced)
* Hyper-Threading (SMT) is enabled: YES
> STATUS: NOT VULNERABLE (your kernel reported your CPU model as not vulnerable)

CVE-2018-12126 aka Fallout, microarchitectural store buffer data sampling (MSBDS)
Mitigated according to the /sys interface: YES (Not affected)

Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)
Kernel mitigation is enabled and active: NO

SMT is either mitigated or disabled: NO

STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

*

AV

CVE-2018-12130 aka ZombielLoad, microarchitectural fill buffer data sampling (MFBDS)
* Mitigated according to the /sys interface: YES (Not affected)

* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)

* Kernel mitigation is enabled and active: NO

* SMT is either mitigated or disabled: NO

> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-12127 aka RIDL, microarchitectural load port data sampling (MLPDS)

* Mitigated according to the /sys interface: YES (Not affected)

* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)

* Kernel mitigation is enabled and active: NO

* SMT is either mitigated or disabled: NO

> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2019-11091 aka RIDL, microarchitectural data sampling uncacheable memory (MDSUM)
* Mitigated according to the /sys interface: YES (Not affected)

* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)

* Kernel mitigation is enabled and active: NO

* SMT is either mitigated or disabled: NO

> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2019-11135 aka ZombielLoad V2, TSX Asynchronous Abort (TAA)

* Mitigated according to the /sys interface: YES (Mitigation: TSX disabled)

* TAA mitigation is supported by kernel: YES (found tsx_async_abort in kernel image)
* TAA mitigation enabled and active: YES (Mitigation: TSX disabled)

> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-12207 aka No eXcuses, iTLB Multihit, machine check exception on page size changes (MCEPSC)
* Mitigated according to the /sys interface: YES (KVM: Mitigation: Split huge pages)

(continues on next page)

2.8. Test Environment 317




CSIT REPORT, Release rls2001

(continued from previous page)

This system is a host running a hypervisor: NO

iTLB Multihit mitigation is supported by kernel: YES (found itlb_multihit in kernel image)
iTLB Multihit mitigation enabled and active: YES (KVM: Mitigation: Split huge pages)
STATUS: NOT VULNERABLE (this system is not running a hypervisor)

AV S

> SUMMARY: CVE-2017-5753:0K CVE-2017-5715:0K CVE-2017-5754:0K CVE-2018-3640:0K CVE-2018-3639:0K CVE-
~2018-3615:0K CVE-2018-3620:0K CVE-2018-3646:0K CVE-2018-12126:0K CVE-2018-12130:0K CVE-2018-
—12127:0K CVE-2019-11091:0K CVE-2019-11135:0K CVE-2018-12207:0K

2.8.6 Calibration Data - Haswell

Following sections include sample calibration data measured on t1-sutl server running in one of the Intel
Xeon Haswell testbeds as specified in FD.io CSIT Testbeds - Xeon Haswell??.

Calibration data obtained from all other servers in Haswell testbeds shows the same or similar values.

Linux cmdline

$ cat /proc/cmdline

BOOT_IMAGE=/vmlinuz-4.15.0-72-generic root=UUID=c59ae603-8076-41f4-bb5d-bc3fc8dd3eal ro isolcpus=1-
—17,19-35 nohz_full=1-17,19-35 rcu_nocbs=1-17,19-35 numa_balancing=disable intel_pstate=disable_
—intel_iommu=on iommu=pt nmi_watchdog=0 audit=0 nosoftlockup processor.max_cstate=1 intel_idle.max_
—cstate=1 hpet=disable tsc=reliable mce=off console=tty@console=ttyS@,115200n8

Linux uname

$ uname -a
Linux t1-tgl 4.15.0-72-generic #81-Ubuntu SMP Tue Nov 26 12:20:02 UTC 2019 x86_64 x86_64 x86_64 GNU/
—Linux

System-level Core Jitter

$ sudo taskset -c 3 /home/testuser/pma_tools/jitter/jitter -i 30

Linux Jitter testing program version 1.8

Iterations=30

The pragram will execute a dummy function 80000 times

Display is updated every 20000 displayUpdate intervals

Timings are in CPU Core cycles

Inst_Min: Minimum Excution time during the display update interval(default is ~1 second)
Inst_Max: Maximum Excution time during the display update interval(default is ~1 second)
Inst_jitter: Jitter in the Excution time during rhe display update interval. This is the value of._
—interest

last_Exec: The Excution time of last iteration just before the display update
Abs_Min: Absolute Minimum Excution time since the program started or statistics were reset
Abs_Max: Absolute Maximum Excution time since the program started or statistics were reset
tmp: Cumulative value calcualted by the dummy function
Interval: Time interval between the display updates in Core Cycles
Sample No: Sample number

Inst_Min Inst_Max Inst_jitter last_Exec Abs_min Abs_max tmp Interval o
—Sample No

160024 172636 12612 160028 160024 172636 1573060608 3205463144 -
1

(continues on next page)

99 https://git.fd.io/csit/tree/docs/lab/testbeds_ucs_hsw_hw_bios_cfg.md?h=rls2001

318 Chapter 2. VPP Performance



https://git.fd.io/csit/tree/docs/lab/testbeds_ucs_hsw_hw_bios_cfg.md?h=rls2001

CSIT REPORT, Release rls2001

(continued from previous page)

160024

160024
3
160024
—4
160024
5
160024
—6
160024
=7
160024
—8
160024
9
160024
—10
160024
11
160024
12
160024
—13
160024
—14
160024
15
160024
—16
160024
17
160024
18
160024
—19
160024
20
160024
21
160024
22
160024
23
160024
—24
160024
25
160024
26
160024
27
160024
28
160024
—29
160024
30

188236

185676

172608

179260

172432

178820

172512

172636

173676

178776

172788

174616

174440

178748

172588

172636

172480

172740

179200

172480

172728

172620

172640

172484

172636

179056

172672

176932

172452

28212

25652

12584

19236

12408

18796

12488

12612

13652

18752

12764

14592

14416

18724

12564

12612

12456

12716

19176

12456

12704

12596

12616

12460

12612

19032

12648

16908

12428

160028

160028

160024

160028

160024

160024

160028

160028

160028

160028

160028

160028

160028

160024

169404

160024

160024

160028

160028

160028

160024

160028

160028

160028

160028

160024

160024

160024

160028

160024

160024

160024

160024

160024

160024

160024

160024

160024

160024

160024

160024

160024

160024

160024

160024

160024

160024

160024

160024

160024

160024

160024

160024

160024

160024

160024

160024

160024

188236

188236

188236

188236

188236

188236

188236

188236

188236

188236

188236

188236

188236

188236

188236

188236

188236

188236

188236

188236

188236

188236

188236

188236

188236

188236

188236

188236

188236

958595072

344129536

4024631296

3410165760

2795700224

2181234688

1566769152

952303616

337838080

4018339840

3403874304

2789408768

2174943232

1560477696

946012160

331546624

4012048384

3397582848

2783117312

2168651776

1554186240

939720704

325255168

4005756928

3391291392

2776825856

2162360320

1547894784

933429248

3205500844

3205485976

3205472740

3205502164

3205452036

3205455408

3205461528

3205478820

3205470412

3205481472

3205492336

3205474904

3205479448

3205482668

3205510496

3205472204

3205455864

3205464932

3205476012

3205465632

3205497204

3205466972

3205471216

3205467388

3205482748

3205467152

3205483268

3205488536

3205440636

2.8. Test Environment

319




CSIT REPORT, Release rls2001

Memory Bandwidth

$ sudo /home/testuser/mlc --bandwidth_matrix
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --bandwidth_matrix

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes
Measuring Memory Bandwidths between nodes within system

Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)

Using all the threads from each core if Hyper-threading is enabled

Using Read-only traffic type

Numa node

Numa node 0 1
] 57935.5 30265.2
1 30284.6  58409.9

$ sudo /home/testuser/mlc --peak_injection_bandwidth
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --peak_injection_bandwidth

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes

Measuring Peak Injection Memory Bandwidths for the system
Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)

Using all the threads from each core if Hyper-threading is enabled
Using traffic with the following read-write ratios

ALL Reads : 115762.2

3:1 Reads-Writes : 106242.2

2:1 Reads-Writes : 103031.8

1:1 Reads-Writes : 87943.7

Stream-triad like: 100048.4

$ sudo /home/testuser/mlc --max_bandwidth
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --max_bandwidth

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes

Measuring Maximum Memory Bandwidths for the system

Will take several minutes to complete as multiple injection rates will be tried to get the best._
—bandwidth

Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)

Using all the threads from each core if Hyper-threading is enabled
Using traffic with the following read-write ratios

ALL Reads : 115782.41

3:1 Reads-Writes : 105965.78

2:1 Reads-Writes : 103162.38

1:1 Reads-Writes : 88255.82

Stream-triad like: 105608.10

Memory Latency

$ sudo /home/testuser/mlc --latency_matrix
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --latency_matrix

Using buffer size of 200.000MB
Measuring idle latencies (in ns)...
Numa node

(continues on next page)

320 Chapter 2. VPP Performance




CSIT REPORT, Release rls2001

(continued from previous page)

Numa node 0 1
0 101.0 132.0
1 141.2 98.8

$ sudo /home/testuser/mlc --idle_latency
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --idle_latency

Using buffer size of 200.000MB
Each iteration took 227.2 core clocks ( 99.0 ns)

$ sudo /home/testuser/mlc --loaded_latency
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --loaded_latency

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes

Measuring Loaded Latencies for the system

Using all the threads from each core if Hyper-threading is enabled
Using Read-only traffic type

Inject Latency Bandwidth

Delay (ns) MB/sec

00000 294.08 115841.6
00002 294.27 115851.5
00008 293.67 115821.8
00015 278.92  115587.5
00050 246.80  113991.2
00100 206.86  104508.1
00200 123.72 72873.6
00300 113.35 52641.1
00400 108.89 41078.9
00500 108.11 33699.1
00700 106.19 24878.0
01000 104.75 17948.1
01300 103.72 14089.0
01700 102.95 11013.6
02500 102.25 7756.3
03500 101.81 5749.3
05000 101.46 4230.4
09000 101.05 2641.4
20000 100.77 1542.5

L1/L2/LLC Latency

$ sudo /home/testuser/mlc --c2c_latency
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --c2c_latency

Measuring cache-to-cache transfer latency (in ns)...

Local Socket L2->L2 HIT latency 42.1

Local Socket L2->L2 HITM latency 47.0

Remote Socket L2->L2 HITM latency (data address homed in writer socket)
Reader Numa Node

Writer Numa Node 0 1
0 - 108.0
1 106.9 -

Remote Socket L2->L2 HITM latency (data address homed in reader socket)

(continues on next page)

2.8. Test Environment 321




CSIT REPORT, Release rls2001

(continued from previous page)

Reader Numa Node

Writer Numa Node 0 1
Q - 107.7
1 106.6 -

Spectre and Meltdown Checks

Following section displays the output of a running shell script to tell if system is vulnerable against the
several “speculative execution” CVEs that were made public in 2018. Script is available on Spectre &
Meltdown Checker Github®,

Spectre and Meltdown mitigation detection tool v@.43

awk: cannot open bash (No such file or directory)

Checking for vulnerabilities on current system

Kernel is Linux 4.15.0-72-generic #81-Ubuntu SMP Tue Nov 26 12:20:02 UTC 2019 x86_64
CPU is Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz

Hardware check
* Hardware support (CPU microcode) for mitigation techniques
* Indirect Branch Restricted Speculation (IBRS)
* SPEC_CTRL MSR is available: YES
* CPU indicates IBRS capability: YES (SPEC_CTRL feature bit)
* Indirect Branch Prediction Barrier (IBPB)
* PRED_CMD MSR is available: YES
* CPU indicates IBPB capability: YES (SPEC_CTRL feature bit)
* Single Thread Indirect Branch Predictors (STIBP)
* SPEC_CTRL MSR is available: YES
* CPU indicates STIBP capability: YES (Intel STIBP feature bit)
* Speculative Store Bypass Disable (SSBD)
* CPU indicates SSBD capability: YES (Intel SSBD)
* L1 data cache invalidation
* FLUSH_CMD MSR is available: YES
* CPU indicates L1D flush capability: YES (L1D flush feature bit)
* Microarchitectural Data Sampling
* VERW instruction is available: YES (MD_CLEAR feature bit)
* Enhanced IBRS (IBRS_ALL)
* CPU indicates ARCH_CAPABILITIES MSR availability: NO
* ARCH_CAPABILITIES MSR advertises IBRS_ALL capability: NO
CPU explicitly indicates not being vulnerable to Meltdown/L1TF (RDCL_NO): NO
CPU explicitly indicates not being vulnerable to Variant 4 (SSB_NO): NO
CPU/Hypervisor indicates L1D flushing is not necessary on this system: NO
Hypervisor indicates host CPU might be vulnerable to RSB underflow (RSBA): NO
CPU explicitly indicates not being vulnerable to Microarchitectural Data Sampling (MDS_NO): NO
CPU explicitly indicates not being vulnerable to TSX Asynchronous Abort (TAA_NO): NO
CPU explicitly indicates not being vulnerable to iTLB Multihit (PSCHANGE_MSC_NO): NO
CPU explicitly indicates having MSR for TSX control (TSX_CTRL_MSR): NO
CPU supports Transactional Synchronization Extensions (TSX): NO
CPU supports Software Guard Extensions (SGX): NO
* CPU microcode is known to cause stability problems: NO (model 0x3f family 0x6 stepping 0x2.
—ucode 0x43 cpuid 0x306f2)
* CPU microcode is the latest known available version: awk: cannot open bash (No such file or._
—directory)
UNKNOWN (latest microcode version for your CPU model is unknown)
* CPU vulnerability to the speculative execution attack variants
* Vulnerable to CVE-2017-5753 (Spectre Variant 1, bounds check bypass): YES
* Vulnerable to CVE-2017-5715 (Spectre Variant 2, branch target injection): YES
* Vulnerable to CVE-2017-5754 (Variant 3, Meltdown, rogue data cache load): YES

b R . T

(continues on next page)

100 https:/github.com/speed47/spectre-meltdown-checker

322 Chapter 2. VPP Performance



https://github.com/speed47/spectre-meltdown-checker
https://github.com/speed47/spectre-meltdown-checker

CSIT REPORT, Release rls2001

(continued from previous page)

Vulnerable to CVE-2018-3640 (Variant 3a, rogue system register read): YES
Vulnerable to CVE-2018-3639 (Variant 4, speculative store bypass): YES
Vulnerable to CVE-2018-3615 (Foreshadow (SGX), L1 terminal fault): NO
Vulnerable to CVE-2018-3620 (Foreshadow-NG (0S), L1 terminal fault): YES
Vulnerable to CVE-2018-3646 (Foreshadow-NG (VMM), L1 terminal fault): YES

* Vulnerable to CVE-2018-12126 (Fallout, microarchitectural store buffer data sampling (MSBDS)):.
—YES

* Vulnerable to CVE-2018-12130 (ZombielLoad, microarchitectural fill buffer data sampling.
—(MFBDS)): YES

* Vulnerable to CVE-2018-12127 (RIDL, microarchitectural load port data sampling (MLPDS)): YES

* Vulnerable to CVE-2019-11091 (RIDL, microarchitectural data sampling uncacheable memory.
— (MDSUM)): YES

* Vulnerable to CVE-2019-11135 (ZombielLoad V2, TSX Asynchronous Abort (TAA)): NO

* Vulnerable to CVE-2018-12207 (No eXcuses, iTLB Multihit, machine check exception on page size.
—changes (MCEPSC)): YES

* % %X %X %

CVE-2017-5753 aka Spectre Variant 1, bounds check bypass

* Mitigated according to the /sys interface: YES (Mitigation: usercopy/swapgs barriers and __user_
—pointer sanitization)

* Kernel has array_index_mask_nospec: YES (1 occurrence(s) found of x86 64 bits array_index_mask_
—nospec())

* Kernel has the Red Hat/Ubuntu patch: NO

* Kernel has mask_nospec64 (arm64): NO

> STATUS: NOT VULNERABLE (Mitigation: usercopy/swapgs barriers and __user pointer sanitization)

CVE-2017-5715 aka Spectre Variant 2, branch target injection
* Mitigated according to the /sys interface: YES (Mitigation: Full generic retpoline, IBPB:_
—conditional, IBRS_FW, RSB filling)
* Mitigation 1
* Kernel is compiled with IBRS support: YES
* IBRS enabled and active: YES (for firmware code only)
* Kernel is compiled with IBPB support: YES
* IBPB enabled and active: YES
* Mitigation 2
* Kernel has branch predictor hardening (arm): NO
* Kernel compiled with retpoline option: YES
* Kernel compiled with a retpoline-aware compiler: YES (kernel reports full retpoline_
—compilation)
> STATUS: NOT VULNERABLE (Full retpoline + IBPB are mitigating the vulnerability)

CVE-2017-5754 aka Variant 3, Meltdown, rogue data cache load
* Mitigated according to the /sys interface: YES (Mitigation: PTI)
* Kernel supports Page Table Isolation (PTI): YES
* PTI enabled and active: YES
* Reduced performance impact of PTI: YES (CPU supports INVPCID, performance impact of PTI will be.
—greatly reduced)
* Running as a Xen PV DomU: NO
> STATUS: NOT VULNERABLE (Mitigation: PTI)

CVE-2018-3640 aka Variant 3a, rogue system register read
* CPU microcode mitigates the vulnerability: YES
> STATUS: NOT VULNERABLE (your CPU microcode mitigates the vulnerability)

CVE-2018-3639 aka Variant 4, speculative store bypass

* Mitigated according to the /sys interface: YES (Mitigation: Speculative Store Bypass disabled via.
—prctl and seccomp)

* Kernel supports disabling speculative store bypass (SSB): YES (found in /proc/self/status)

* SSB mitigation is enabled and active: YES (per-thread through prctl)

* SSB mitigation currently active for selected processes: YES (systemd-journald systemd-logind.
—systemd-networkd systemd-resolved systemd-timesyncd systemd-udevd)

> STATUS: NOT VULNERABLE (Mitigation: Speculative Store Bypass disabled via prctl and seccomp)

(continues on next page)

2.8. Test Environment 323




CSIT REPORT, Release rls2001

(continued from previous page)

CVE-2018-3615 aka Foreshadow (SGX), L1 terminal fault
* CPU microcode mitigates the vulnerability: N/A
> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-3620 aka Foreshadow-NG (0S), L1 terminal fault

* Mitigated according to the /sys interface: YES (Mitigation: PTE Inversion; VMX: conditional cache.
—flushes, SMT disabled)

* Kernel supports PTE inversion: YES (found in kernel image)

* PTE inversion enabled and active: YES

> STATUS: NOT VULNERABLE (Mitigation: PTE Inversion; VMX: conditional cache flushes, SMT disabled)

CVE-2018-3646 aka Foreshadow-NG (VMM), L1 terminal fault
* Information from the /sys interface: Mitigation: PTE Inversion; VMX: conditional cache flushes,.
—SMT disabled
* This system is a host running a hypervisor: NO
* Mitigation 1 (KVM)
* EPT is disabled: NO
* Mitigation 2
% L1D flush is supported by kernel: YES (found flush_l1d in /proc/cpuinfo)
* L1D flush enabled: YES (conditional flushes)
* Hardware-backed L1D flush supported: YES (performance impact of the mitigation will be greatly.
—reduced)
* Hyper-Threading (SMT) is enabled: NO
> STATUS: NOT VULNERABLE (this system is not running a hypervisor)

CVE-2018-12126 aka Fallout, microarchitectural store buffer data sampling (MSBDS)

Mitigated according to the /sys interface: YES (Mitigation: Clear CPU buffers; SMT disabled)

* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)

* Kernel mitigation is enabled and active: YES

* SMT is either mitigated or disabled: YES

> STATUS: NOT VULNERABLE (Your microcode and kernel are both up to date for this mitigation, and.
—mitigation is enabled)

*

CVE-2018-12130 aka ZombielLoad, microarchitectural fill buffer data sampling (MFBDS)

Mitigated according to the /sys interface: YES (Mitigation: Clear CPU buffers; SMT disabled)

* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)

* Kernel mitigation is enabled and active: YES

* SMT is either mitigated or disabled: YES

> STATUS: NOT VULNERABLE (Your microcode and kernel are both up to date for this mitigation, and_
—mitigation is enabled)

*

CVE-2018-12127 aka RIDL, microarchitectural load port data sampling (MLPDS)

* Mitigated according to the /sys interface: YES (Mitigation: Clear CPU buffers; SMT disabled)

* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)

* Kernel mitigation is enabled and active: YES

* SMT is either mitigated or disabled: YES

> STATUS: NOT VULNERABLE (Your microcode and kernel are both up to date for this mitigation, and.
—mitigation is enabled)

CVE-2019-11091 aka RIDL, microarchitectural data sampling uncacheable memory (MDSUM)

Mitigated according to the /sys interface: YES (Mitigation: Clear CPU buffers; SMT disabled)

* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)

* Kernel mitigation is enabled and active: YES

* SMT is either mitigated or disabled: YES

> STATUS: NOT VULNERABLE (Your microcode and kernel are both up to date for this mitigation, and.
—mitigation is enabled)

*

CVE-2019-11135 aka ZombielLoad V2, TSX Asynchronous Abort (TAA)
* Mitigated according to the /sys interface: YES (Not affected)
* TAA mitigation is supported by kernel: YES (found tsx_async_abort in kernel image)

(continues on next page)

324 Chapter 2. VPP Performance




CSIT REPORT, Release rls2001

(continued from previous page)

* TAA mitigation enabled and active: NO
> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-12207 aka No eXcuses, iTLB Multihit, machine check exception on page size changes (MCEPSC)
Mitigated according to the /sys interface: YES (KVM: Mitigation: Split huge pages)

* This system is a host running a hypervisor: NO

% iTLB Multihit mitigation is supported by kernel: YES (found itlb_multihit in kernel image)

% 1iTLB Multihit mitigation enabled and active: YES (KVM: Mitigation: Split huge pages)

> STATUS: NOT VULNERABLE (this system is not running a hypervisor)

*

> SUMMARY: CVE-2017-5753:0K CVE-2017-5715:0K CVE-2017-5754:0K CVE-2018-3640:0K CVE-2018-3639:0K CVE-
—2018-3615:0K CVE-2018-3620:0K CVE-2018-3646:0K CVE-2018-12126:0K CVE-2018-12130:0K CVE-2018-
—12127:0K CVE-2019-11091:0K CVE-2019-11135:0K CVE-2018-12207:0K

2.8.7 Calibration Data - Denverton

Following sections include sample calibration data measured on Denverton server at Intel SH labs.

A 2-Node Atom Denverton testing took place at Intel Corporation carefully adhering to FD.io CSIT best
practices.

Linux cmdline

$ cat /proc/cmdline

BOOT_IMAGE=/boot/vmlinuz-4.15.0-36-generic root=UUID=d3cfffd@-1e77-423a-a53a-a117199b6025 ro intel_
—iommu=on iommu=pt isolcpus=1-11 nohz_full=1-11 rcu_nocbs=1-11 default_hugepagesz=1G hugepagesz=1G_
—hugepages=8 intel_pstate=disable nmi_watchdog=0 numa_balancing=disable tsc=reliable nosoftlockup._
—quiet splash vt.handoff=7

Linux uname

$ uname -a
Linux 4.15.0-36-generic #39~16.04.1-Ubuntu SMP Tue Sep 25 08:59:23 UTC 2018 x86_64 x86_64 x86_64.
—GNU/Linux

System-level Core Jitter

$ sudo taskset -c 2 /home/testuser/pma_tools/jitter/jitter -c 2 -i 20

Linux Jitter testing program version 1.9

Iterations=20

The pragram will execute a dummy function 80000 times

Display is updated every 20000 displayUpdate intervals

Thread affinity will be set to core_id:2

Timings are in CPU Core cycles

Inst_Min: Minimum Excution time during the display update interval(default is ~1 second)
Inst_Max: Maximum Excution time during the display update interval(default is ~1 second)
Inst_jitter: Jitter in the Excution time during rhe display update interval. This is the value of._
—interest

last_Exec: The Excution time of last iteration just before the display update

Abs_Min: Absolute Minimum Excution time since the program started or statistics were reset
Abs_Max: Absolute Maximum Excution time since the program started or statistics were reset
tmp: Cumulative value calcualted by the dummy function

Interval: Time interval between the display updates in Core Cycles

Sample No: Sample number

(continues on next page)

2.8. Test Environment 325




CSIT REPORT, Release rls2001

(continued from previous page)

Inst_Min Inst_Max Inst_jitter last_Exec Abs_min Abs_max tmp Interval o
—Sample No

177530 196100 18570 177530 177530 196100 4156751872 3556820054 u
B 177530 200784 23254 177530 177530 200784 321060864 3556897644 .
- 177530 196346 18816 177530 177530 200784 780337152 3556918674 -
- 177530 195962 18432 177530 177530 200784 1239613440 3556847928 .
o 177530 195960 18430 177530 177530 200784 1698889728 3556860214 .
- 177530 198824 21294 177530 177530 200784 2158166016 3556854934 -
o 177530 198522 20992 177530 177530 200784 2617442304 3556862410 -
- 177530 196362 18832 177530 177530 200784 3076718592 3556851636 .
o 177530 199114 21584 177530 177530 200784 3535994880 3556870846 -
- 177530 197194 19664 177530 177530 200784 3995271168 3556933584 -
(ﬁ10177530 198272 20742 177536 177530 200784 159580160 3556869044 -
911177530 197586 20056 177530 177530 200784 618856448 3556903482 -
H12177530 196072 18542 177530 177530 200784 1078132736 3556825540 o
913177530 196354 18824 177530 177530 200784 1537409024 3556881664 -
914177530 195906 18376 177530 177530 200784 1996685312 3556839924 -
{H15177530 199066 21536 177530 177530 200784 2455961600 3556860220 »
916177530 196968 19438 177530 177530 200784 2915237888 3556871890 -
<H17177530 195896 18366 177530 177530 200784 3374514176 3556855338 o
{H18177530 196020 18490 177530 177530 200784 3833790464 3556839820 -
<H19177530 196030 18500 177530 177530 200784 4293066752 3556889196 -
20
Memory Bandwidth

$ sudo /home/testuser/mlc --bandwidth_matrix
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --bandwidth_matrix

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes
Measuring Memory Bandwidths between nodes within system
Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)
Using all the threads from each core if Hyper-threading is enabled
Using Read-only traffic type
Memory node

Socket 0

0 28157.2

326 Chapter 2. VPP Performance




CSIT REPORT, Release rls2001

$ sudo /home/testuser/mlc --peak_injection_bandwidth
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --peak_injection_bandwidth

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes

Measuring Peak Injection Memory Bandwidths for the system
Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)

Using all the threads from each core if Hyper-threading is enabled
Using traffic with the following read-write ratios

ALL Reads : 28150.0
3:1 Reads-Writes : 27425.0
2:1 Reads-Writes : 27565.4
1:1 Reads-Writes : 27489.3
Stream-triad like: 26878.2

$ sudo /home/testuser/mlc --max_bandwidth
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --max_bandwidth

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes

Measuring Maximum Memory Bandwidths for the system

Will take several minutes to complete as multiple injection rates will be tried to get the best.
—bandwidth

Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)

Using all the threads from each core if Hyper-threading is enabled

Using traffic with the following read-write ratios

ALL Reads : 30032.40
3:1 Reads-Writes : 27450.88
2:1 Reads-Writes : 27567.46
1:1 Reads-Writes : 27501.90
Stream-triad like: 27124.82

Memory Latency

$ sudo /home/testuser/mlc --latency_matrix
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --latency_matrix

Using buffer size of 2000.000MB
Intel(R) Memory Latency Checker - v3.5
Measuring idle latencies (in ns)...
Memory node
Socket 0
0 93.1

$ sudo /home/testuser/mlc --idle_latency
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --idle_latency

Using buffer size of 200.000MB
Each iteration took 186.7 core clocks ( 93.4 ns)

$ sudo /home/testuser/mlc --loaded_latency
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --loaded_latency

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes

(continues on next page)

2.8. Test Environment 327




CSIT REPORT, Release rls2001

(continued from previous page)

Measuring Loaded Latencies for the system

Using all the threads from each core if Hyper-threading is enabled
Using Read-only traffic type

Inject Latency Bandwidth

Delay (ns) MB/sec

00000 135.35 27186.0
00002 135.47 27176.9
00008 134.97 27063.3
00015 134.41 26825.6
00050 139.83 28419.1
00100 124.28 22616.4
00200 109.40 14139.8
00300 104.56 10275.1
00400 102.02 8120.0
00500 100.38 6751.4
00700  98.30 5124.9
01000  96.56 3852.7
01300  95.65 3149.0
01700 95.06 2585.4
02500  94.43 1988.8
03500 94.16 1621.1
05000  93.95 1343.1
09000  93.65 1052.6
20000 93.43 851.7
L1/L2/LLC Latency

$ sudo /home/testuser/mlc --c2c_latency
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --c2c_latency

Measuring cache-to-cache transfer latency (in ns)...
Local Socket L2->L2 HIT latency 8.8
Local Socket L2->L2 HITM latency 8.8

Spectre and Meltdown Checks

Following section displays the output of a running shell script to tell if system is vulnerable against the
several “speculative execution” CVEs that were made public in 2018. Script is available on Spectre &
Meltdown Checker Github01,

Spectre and Meltdown mitigation detection tool v@.42

Checking for vulnerabilities on current system

Kernel is Linux 4.15.0-51-generic #55-Ubuntu SMP Wed May 15 14:27:21 UTC 2019 x86_64
CPU is Intel(R) Atom(TM) CPU C3858 @ 2.00GHz

Hardware check
* Hardware support (CPU microcode) for mitigation techniques
* Indirect Branch Restricted Speculation (IBRS)
* SPEC_CTRL MSR is available: YES
* CPU indicates IBRS capability: YES (SPEC_CTRL feature bit)
* Indirect Branch Prediction Barrier (IBPB)
* PRED_CMD MSR is available: YES
* CPU indicates IBPB capability: YES (SPEC_CTRL feature bit)

(continues on next page)

101 https:/github.com/speed47/spectre-meltdown-checker

328 Chapter 2. VPP Performance



https://github.com/speed47/spectre-meltdown-checker
https://github.com/speed47/spectre-meltdown-checker

CSIT REPORT, Release rls2001

(continued from previous page)

* Single Thread Indirect Branch Predictors (STIBP)
* SPEC_CTRL MSR is available: YES
* CPU indicates STIBP capability: YES (Intel STIBP feature bit)
* Speculative Store Bypass Disable (SSBD)
* CPU indicates SSBD capability: YES (Intel SSBD)
* L1 data cache invalidation
* FLUSH_CMD MSR is available: NO
* CPU indicates L1D flush capability: NO
* Microarchitecture Data Sampling
* VERW instruction is available: YES (MD_CLEAR feature bit)
* Enhanced IBRS (IBRS_ALL)
* CPU indicates ARCH_CAPABILITIES MSR availability: YES
* ARCH_CAPABILITIES MSR advertises IBRS_ALL capability: NO
CPU explicitly indicates not being vulnerable to Meltdown/L1TF (RDCL_NO): YES
CPU explicitly indicates not being vulnerable to Variant 4 (SSB_NO): NO
CPU/Hypervisor indicates L1D flushing is not necessary on this system: YES
Hypervisor indicates host CPU might be vulnerable to RSB underflow (RSBA): NO
CPU explicitly indicates not being vulnerable to Microarchitectural Data Sampling (MDS_NO): YES
CPU supports Software Guard Extensions (SGX): NO
* CPU microcode is known to cause stability problems: NO (model 0x5f family @x6 stepping 0x1.
—ucode 0x2e cpuid 0x506f1)
* CPU microcode is the latest known available version: awk: fatal: cannot open file ‘bash for._
—reading (No such file or directory)
UNKNOWN (latest microcode version for your CPU model is unknown)
* CPU vulnerability to the speculative execution attack variants
* Vulnerable to CVE-2017-5753 (Spectre Variant 1, bounds check bypass): YES
Vulnerable to CVE-2017-5715 (Spectre Variant 2, branch target injection): YES
Vulnerable to CVE-2017-5754 (Variant 3, Meltdown, rogue data cache load): NO
Vulnerable to CVE-2018-3640 (Variant 3a, rogue system register read): YES
Vulnerable to CVE-2018-3639 (Variant 4, speculative store bypass): YES
Vulnerable to CVE-2018-3615 (Foreshadow (SGX), L1 terminal fault): NO
Vulnerable to CVE-2018-3620 (Foreshadow-NG (0S), L1 terminal fault): NO
Vulnerable to CVE-2018-3646 (Foreshadow-NG (VMM), L1 terminal fault): NO
Vulnerable to CVE-2018-12126 (Fallout, microarchitectural store buffer data sampling (MSBDS)):.

* % %X %X %X %

b T T e

—NO
* Vulnerable to CVE-2018-12130 (ZombielLoad, microarchitectural fill buffer data sampling.
—(MFBDS)): NO
* Vulnerable to CVE-2018-12127 (RIDL, microarchitectural load port data sampling (MLPDS)): NO
* Vulnerable to CVE-2019-11091 (RIDL, microarchitectural data sampling uncacheable memory..
— (MDSUM)): NO

CVE-2017-5753 aka Spectre Variant 1, bounds check bypass

* Mitigated according to the /sys interface: YES (Mitigation: __user pointer sanitization)
* Kernel has array_index_mask_nospec: YES (1 occurrence(s) found of x86 64 bits array_index_mask_
—nospec())

* Kernel has the Red Hat/Ubuntu patch: NO
* Kernel has mask_nospec64 (arm64): NO
> STATUS: NOT VULNERABLE (Mitigation: __user pointer sanitization)

CVE-2017-5715 aka Spectre Variant 2, branch target injection
* Mitigated according to the /sys interface: YES (Mitigation: Full generic retpoline, IBPB:._
—sconditional, IBRS_FW, STIBP: disabled, RSB filling)
* Mitigation 1
* Kernel is compiled with IBRS support: YES
* IBRS enabled and active: YES (for firmware code only)
* Kernel is compiled with IBPB support: YES
* IBPB enabled and active: YES
* Mitigation 2
* Kernel has branch predictor hardening (arm): NO
* Kernel compiled with retpoline option: YES

(continues on next page)

2.8. Test Environment 329




CSIT REPORT, Release rls2001

(continued from previous page)

> STATUS: NOT VULNERABLE (Full retpoline + IBPB are mitigating the vulnerability)

CVE-2017-5754 aka Variant 3, Meltdown, rogue data cache load
* Mitigated according to the /sys interface: YES (Not affected)
* Kernel supports Page Table Isolation (PTI): YES
* PTI enabled and active: UNKNOWN (dmesg truncated, please reboot and relaunch this script)
* Reduced performance impact of PTI: NO (PCID/INVPCID not supported, performance impact of PTI.
—will be significant)
* Running as a Xen PV DomU: NO
> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-3640 aka Variant 3a, rogue system register read
* CPU microcode mitigates the vulnerability: YES
> STATUS: NOT VULNERABLE (your CPU microcode mitigates the vulnerability)

CVE-2018-3639 aka Variant 4, speculative store bypass

* Mitigated according to the /sys interface: YES (Mitigation: Speculative Store Bypass disabled via.
—prctl and seccomp)

* Kernel supports disabling speculative store bypass (SSB): YES (found in /proc/self/status)

* SSB mitigation is enabled and active: YES (per-thread through prctl)

* SSB mitigation currently active for selected processes: YES (systemd-journald systemd-logind.
—ssystemd-networkd systemd-resolved systemd-timesyncd systemd-udevd)

> STATUS: NOT VULNERABLE (Mitigation: Speculative Store Bypass disabled via prctl and seccomp)

CVE-2018-3615 aka Foreshadow (SGX), L1 terminal fault
* CPU microcode mitigates the vulnerability: N/A
> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-3620 aka Foreshadow-NG (0S), L1 terminal fault

* Mitigated according to the /sys interface: YES (Not affected)

* Kernel supports PTE inversion: YES (found in kernel image)

* PTE inversion enabled and active: NO

> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-3646 aka Foreshadow-NG (VMM), L1 terminal fault
* Information from the /sys interface: Not affected
* This system is a host running a hypervisor: NO
* Mitigation 1 (KVM)
* EPT is disabled: NO
* Mitigation 2
* L1D flush is supported by kernel: YES (found flush_l1d in kernel image)
* L1D flush enabled: NO
* Hardware-backed L1D flush supported: NO (flush will be done in software, this is slower)
* Hyper-Threading (SMT) is enabled: NO
> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-12126 aka Fallout, microarchitectural store buffer data sampling (MSBDS)

* Mitigated according to the /sys interface: YES (Not affected)

* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)

* Kernel mitigation is enabled and active: NO

* SMT is either mitigated or disabled: NO

> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-12130 aka ZombielLoad, microarchitectural fill buffer data sampling (MFBDS)
Mitigated according to the /sys interface: YES (Not affected)

* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)

* Kernel mitigation is enabled and active: NO

* SMT is either mitigated or disabled: NO

> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

*

CVE-2018-12127 aka RIDL, microarchitectural load port data sampling (MLPDS)

(continues on next page)

330 Chapter 2. VPP Performance




CSIT REPORT, Release rls2001

(continued from previous page)

Mitigated according to the /sys interface: YES (Not affected)

Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)
Kernel mitigation is enabled and active: NO

SMT is either mitigated or disabled: NO

STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

Voo%x % % %

CVE-2019-11091 aka RIDL, microarchitectural data sampling uncacheable memory (MDSUM)
* Mitigated according to the /sys interface: YES (Not affected)

* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)

* Kernel mitigation is enabled and active: NO

* SMT is either mitigated or disabled: NO

> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

> SUMMARY: CVE-2017-5753:0K CVE-2017-5715:0K CVE-2017-5754:0K CVE-2018-3640:0K CVE-2018-3639:0K CVE-
—2018-3615:0K CVE-2018-3620:0K CVE-2018-3646:0K CVE-2018-12126:0K CVE-2018-12130:0K CVE-2018-
—12127:0K CVE-2019-11091:0K

2.8.8 Calibration Data - TaiShan

Following sections include sample calibration data measured on s17-t33-sutl server running in one of
the Cortex-A72 testbeds.

Calibration data obtained from all other servers in TaiShan testbeds shows the same or similar values.

Linux cmdline

$ cat /proc/cmdline

BOOT_IMAGE=/boot/vmlinuz-4.15.0-54-generic root=/dev/mapper/huawei--1--vg-root ro isolcpus=1-15,17-
—+31,33-47,49-63 nohz_full=1-15 17-31,33-47,49-63 rcu_nocbs=1-15 17-31,33-47,49-63 intel_
—siommu=on nmi_watchdog=0 audit=0 nosoftlockup processor.max_cstate=1 console=ttyAMA®,115200n8

Linux uname

$ uname -a
Linux s17-t33-sutl 4.15.0-54-generic #58-Ubuntu SMP Mon Jun 24 10:56:40 UTC 2019 aarch64 aarch64._
—aarch64 GNU/Linux

System-level Core Jitter

$ sudo taskset -c 3 /home/testuser/pma_tools/jitter/jitter -i 20

Linux Jitter testing program version 1.9

Iterations=30

The pragram will execute a dummy function 80000 times

Display is updated every 20000 displayUpdate intervals

Thread affinity will be set to core_id:7

Timings are in CPU Core cycles

Inst_Min: Minimum Excution time during the display update interval(default is ~1 second)
Inst_Max: Maximum Excution time during the display update interval(default is ~1 second)
Inst_jitter: Jitter in the Excution time during rhe display update interval. This is the value of._
—interest

last_Exec: The Excution time of last iteration just before the display update

Abs_Min: Absolute Minimum Excution time since the program started or statistics were reset
Abs_Max: Absolute Maximum Excution time since the program started or statistics were reset
tmp: Cumulative value calcualted by the dummy function

(continues on next page)

2.8. Test Environment 331




CSIT REPORT, Release rls2001

(continued from previous page)

Interval: Time interval between the display updates in Core Cycles
Sample No: Sample number

Inst_Min Inst_Max Inst_jitter last_Exec Abs_min Abs_max tmp Interval o
—Sample No

160022 172254 12232 160042 160022 172254 1903230976 3204401362 .
- 160022 173148 13126 160044 160022 173148 814809088 3204619316 -
- 160022 169460 9438 160044 160022 173148 4021354496 3204391306 .
- 160024 170270 10246 160044 160022 173148 2932932608 3204385830 .
o 160022 169660 9638 160044 160022 173148 1844510720 3204387290 -
- 160022 169410 9388 160040 160022 173148 756088832 3204375832 .
o 160022 169012 8990 160042 160022 173148 3962634240 3204378924 .
o 160022 169556 9534 160044 160022 173148 2874212352 3204374882 -
o 160022 171684 11662 160042 160022 173148 1785790464 3204394596 -
- 160022 171546 11524 160024 160022 173148 697368576 3204602774 -
910160922 169248 9226 160042 160022 173148 3903913984 3204401676 o
HH160022 168458 8436 160042 160022 173148 2815492096 3204256350 »
M12160022 169574 9552 160044 160022 173148 1727070208 3204278116 -
913160922 169352 9330 160044 160022 173148 638648320 3204327234 -
H14160022 169100 9078 160044 160022 173148 3845193728 3204388132 -
M15160022 169338 9316 160042 160022 173148 2756771840 3204380724 -
g16160®22 170828 10806 160046 160022 173148 1668349952 3204430452 o
H17160022 173162 13140 160026 160022 173162 579928064 3204611318 o
M18160@22 170482 10460 160042 160022 173162 3786473472 3204389896 -
( >19160@24 170704 10680 160044 160022 173162 2698051584 3204422126 o
H2®160024 169302 9278 160044 160022 173162 1609629696 3204397334 -
H21160@22 171848 11826 160044 160022 173162 521207808 3204389818 -
( >22160@22 169438 9416 160042 160022 173162 3727753216 3204395382 o
{H23160022 169312 9290 160042 160022 173162 2639331328 3204371202 -
!ﬁ24160®22 171368 11346 160044 160022 173162 1550909440 3204440464 -
( >25160@22 171998 11976 160042 160022 173162 462487552 3204609440 -
H26160022 169740 9718 160046 160022 173162 3669032960 3204405826 -
!ﬁ27160022 169610 9588 160044 160022 173162 2580611072 3204390608 -
28

(continues on next page)

332 Chapter 2. VPP Performance




CSIT REPORT, Release rls2001

(continued from previous page)

160022 169254 9232 160044 160022 173162 1492189184 3204399760 -
29

160022 169386 9364 160046 160022 173162 403767296 3204417762 -
—30

Spectre and Meltdown Checks

Following section displays the output of a running shell script to tell if system is vulnerable against the
several “speculative execution” CVEs that were made public in 2018. Script is available on Spectre &
Meltdown Checker Github02,

Spectre and Meltdown mitigation detection tool v@.43

awk: cannot open bash (No such file or directory)

Checking for vulnerabilities on current system

Kernel is Linux 4.15.0-23-generic #25-Ubuntu SMP Wed May 23 18:02:16 UTC 2018 x86_64
CPU is Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz

Hardware check
* Hardware support (CPU microcode) for mitigation techniques
* Indirect Branch Restricted Speculation (IBRS)
* SPEC_CTRL MSR is available: YES
* CPU indicates IBRS capability: YES (SPEC_CTRL feature bit)
* Indirect Branch Prediction Barrier (IBPB)
* PRED_CMD MSR is available: YES
* CPU indicates IBPB capability: YES (SPEC_CTRL feature bit)
* Single Thread Indirect Branch Predictors (STIBP)
* SPEC_CTRL MSR is available: YES
* CPU indicates STIBP capability: YES (Intel STIBP feature bit)
* Speculative Store Bypass Disable (SSBD)
* CPU indicates SSBD capability: NO
* L1 data cache invalidation
* FLUSH_CMD MSR is available: NO
* CPU indicates L1D flush capability: NO
* Microarchitectural Data Sampling
* VERW instruction is available: NO
* Enhanced IBRS (IBRS_ALL)
* CPU indicates ARCH_CAPABILITIES MSR availability: NO
* ARCH_CAPABILITIES MSR advertises IBRS_ALL capability: NO
CPU explicitly indicates not being vulnerable to Meltdown/L1TF (RDCL_NO): NO
CPU explicitly indicates not being vulnerable to Variant 4 (SSB_NO): NO
CPU/Hypervisor indicates L1D flushing is not necessary on this system: NO
Hypervisor indicates host CPU might be vulnerable to RSB underflow (RSBA): NO
CPU explicitly indicates not being vulnerable to Microarchitectural Data Sampling (MDS_NO): NO
CPU explicitly indicates not being vulnerable to TSX Asynchronous Abort (TAA_NO): NO
CPU explicitly indicates not being vulnerable to iTLB Multihit (PSCHANGE_MSC_NO): NO
CPU explicitly indicates having MSR for TSX control (TSX_CTRL_MSR): NO
CPU supports Transactional Synchronization Extensions (TSX): YES (RTM feature bit)
CPU supports Software Guard Extensions (SGX): NO
* CPU microcode is known to cause stability problems: NO (model 0x55 family 0x6 stepping 0x4.
—ucode 0x2000043 cpuid 0x50654)
* CPU microcode is the latest known available version: awk: cannot open bash (No such file or._
—directory)
UNKNOWN (latest microcode version for your CPU model is unknown)
* CPU vulnerability to the speculative execution attack variants
* Vulnerable to CVE-2017-5753 (Spectre Variant 1, bounds check bypass): YES
* Vulnerable to CVE-2017-5715 (Spectre Variant 2, branch target injection): YES
* Vulnerable to CVE-2017-5754 (Variant 3, Meltdown, rogue data cache load): YES

b R . T

(continues on next page)

102 https:/github.com/speed47/spectre-meltdown-checker

2.8. Test Environment 333



https://github.com/speed47/spectre-meltdown-checker
https://github.com/speed47/spectre-meltdown-checker

CSIT REPORT, Release rls2001

(continued from previous page)

Vulnerable to CVE-2018-3640 (Variant 3a, rogue system register read): YES
Vulnerable to CVE-2018-3639 (Variant 4, speculative store bypass): YES
Vulnerable to CVE-2018-3615 (Foreshadow (SGX), L1 terminal fault): NO
Vulnerable to CVE-2018-3620 (Foreshadow-NG (0S), L1 terminal fault): YES
Vulnerable to CVE-2018-3646 (Foreshadow-NG (VMM), L1 terminal fault): YES

* Vulnerable to CVE-2018-12126 (Fallout, microarchitectural store buffer data sampling (MSBDS)):.
—YES

* Vulnerable to CVE-2018-12130 (ZombielLoad, microarchitectural fill buffer data sampling.
—(MFBDS)): YES

* Vulnerable to CVE-2018-12127 (RIDL, microarchitectural load port data sampling (MLPDS)): YES

* Vulnerable to CVE-2019-11091 (RIDL, microarchitectural data sampling uncacheable memory.
— (MDSUM)): YES

* Vulnerable to CVE-2019-11135 (ZombielLoad V2, TSX Asynchronous Abort (TAA)): YES

* Vulnerable to CVE-2018-12207 (No eXcuses, iTLB Multihit, machine check exception on page size.
—changes (MCEPSC)): YES

* % %X %X %

CVE-2017-5753 aka Spectre Variant 1, bounds check bypass

* Mitigated according to the /sys interface: YES (Mitigation: __user pointer sanitization)

* Kernel has array_index_mask_nospec: YES (1 occurrence(s) found of x86 64 bits array_index_mask_
—nospec())

* Kernel has the Red Hat/Ubuntu patch: NO

* Kernel has mask_nospec64 (arm64): NO

> STATUS: NOT VULNERABLE (Mitigation: __user pointer sanitization)

CVE-2017-5715 aka Spectre Variant 2, branch target injection
* Mitigated according to the /sys interface: YES (Mitigation: Full generic retpoline, IBPB, IBRS_FW)
* Mitigation 1
* Kernel is compiled with IBRS support: YES
* IBRS enabled and active: YES (for firmware code only)
* Kernel is compiled with IBPB support: YES
* IBPB enabled and active: YES
* Mitigation 2
* Kernel has branch predictor hardening (arm): NO
* Kernel compiled with retpoline option: YES
* Kernel compiled with a retpoline-aware compiler: YES (kernel reports full retpoline.
—compilation)
* Kernel supports RSB filling: YES
> STATUS: NOT VULNERABLE (Full retpoline + IBPB are mitigating the vulnerability)

CVE-2017-5754 aka Variant 3, Meltdown, rogue data cache load
* Mitigated according to the /sys interface: YES (Mitigation: PTI)
* Kernel supports Page Table Isolation (PTI): YES
* PTI enabled and active: YES
* Reduced performance impact of PTI: YES (CPU supports INVPCID, performance impact of PTI will be.
—greatly reduced)
* Running as a Xen PV DomU: NO
> STATUS: NOT VULNERABLE (Mitigation: PTI)

CVE-2018-3640 aka Variant 3a, rogue system register read
* CPU microcode mitigates the vulnerability: NO
> STATUS: VULNERABLE (an up-to-date CPU microcode is needed to mitigate this vulnerability)

CVE-2018-3639 aka Variant 4, speculative store bypass

Mitigated according to the /sys interface: NO (Vulnerable)

* Kernel supports disabling speculative store bypass (SSB): YES (found in /proc/self/status)
* SSB mitigation is enabled and active: NO

> STATUS: VULNERABLE (Your CPU doesnt support SSBD)

*

CVE-2018-3615 aka Foreshadow (SGX), L1 terminal fault
* CPU microcode mitigates the vulnerability: N/A
> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

(continues on next page)

334 Chapter 2. VPP Performance




CSIT REPORT, Release rls2001

(continued from previous page)

CVE-2018-3620 aka Foreshadow-NG (0S), L1 terminal fault

* Kernel supports PTE inversion: NO

* PTE inversion enabled and active: UNKNOWN (sysfs interface not available)
> STATUS: VULNERABLE (Your kernel doesnt support PTE inversion, update it)

CVE-2018-3646 aka Foreshadow-NG (VMM), L1 terminal fault
* This system is a host running a hypervisor: NO
* Mitigation 1 (KVM)
* EPT is disabled: NO
* Mitigation 2
* L1D flush is supported by kernel: NO
% L1D flush enabled: UNKNOWN (cant find or read /sys/devices/system/cpu/vulnerabilities/11tf)
* Hardware-backed L1D flush supported: NO (flush will be done in software, this is slower)
* Hyper-Threading (SMT) is enabled: YES
> STATUS: NOT VULNERABLE (this system is not running a hypervisor)

CVE-2018-12126 aka Fallout, microarchitectural store buffer data sampling (MSBDS)

* Kernel supports using MD_CLEAR mitigation: NO

> STATUS: VULNERABLE (Neither your kernel or your microcode support mitigation, upgrade both to._
—mitigate the vulnerability)

CVE-2018-12130 aka ZombielLoad, microarchitectural fill buffer data sampling (MFBDS)

* Kernel supports using MD_CLEAR mitigation: NO

> STATUS: VULNERABLE (Neither your kernel or your microcode support mitigation, upgrade both to._
—mitigate the vulnerability)

CVE-2018-12127 aka RIDL, microarchitectural load port data sampling (MLPDS)

* Kernel supports using MD_CLEAR mitigation: NO

> STATUS: VULNERABLE (Neither your kernel or your microcode support mitigation, upgrade both to.
—mitigate the vulnerability)

CVE-2019-11091 aka RIDL, microarchitectural data sampling uncacheable memory (MDSUM)

* Kernel supports using MD_CLEAR mitigation: NO

> STATUS: VULNERABLE (Neither your kernel or your microcode support mitigation, upgrade both to_
—mitigate the vulnerability)

CVE-2019-11135 aka ZombielLoad V2, TSX Asynchronous Abort (TAA)

* TAA mitigation is supported by kernel: NO

* TAA mitigation enabled and active: NO (tsx_async_abort not found in sysfs hierarchy)
> STATUS: VULNERABLE (Your kernel doesnt support TAA mitigation, update it)

CVE-2018-12207 aka No eXcuses, iTLB Multihit, machine check exception on page size changes (MCEPSC)
* This system is a host running a hypervisor: NO

% iTLB Multihit mitigation is supported by kernel: NO

% iTLB Multihit mitigation enabled and active: NO (itlb_multihit not found in sysfs hierarchy)

> STATUS: NOT VULNERABLE (this system is not running a hypervisor)

> SUMMARY: CVE-2017-5753:0K CVE-2017-5715:0K CVE-2017-5754:0K CVE-2018-3640:K0 CVE-2018-3639:KO CVE-
—2018-3615:0K CVE-2018-3620:KO CVE-2018-3646:0K CVE-2018-12126:KO CVE-2018-12130:KO CVE-2018-
—12127:KO CVE-2019-11091:KO CVE-2019-11135:K0 CVE-2018-12207:0K

2.8.9 SUT Settings - Linux

System provisioning is done by combination of PXE boot unattented install and Ansible1® described in
CSIT Testbed Setup%4,

Below a subset of the running configuration:

103 https://www.ansible.com
104 https:/git.fd.io/csit/tree/resources/tools/testbed-setup/README.md?h=rls2001

2.8. Test Environment 335



https://www.ansible.com
https://git.fd.io/csit/tree/resources/tools/testbed-setup/README.md?h=rls2001

CSIT REPORT, Release rls2001

1. Ubuntu 18.04.x LTS

$ lsb_release -a
No LSB modules are available.
Distributor ID: Ubuntu

Description: Ubuntu 18.04.3 LTS
Release: 18.04
Codename: bionic

Linux Boot Parameters

e isolcpus=<cpu number>-<cpu number> used for all cpu cores apart from first core of each socket
used for running VPP worker threads and Qemu/LXC processes https:/www.kernel.org/doc/
Documentation/admin-guide/kernel-parameters.txt

¢ intel_pstate=disable - [X86] Do not enable intel_pstate as the default scaling driver for the sup-
ported processors. Intel P-State driver decide what P-state (CPU core power state) to use based
on requesting policy from the cpufreq core. [X86 - Either 32-bit or 64-bit x86] https:/www.kernel.
org/doc/Documentation/cpu-freq/intel-pstate.txt

e nohz_full=<cpu number>-<cpu number> - [KNLBOOT] In kernels built with CON-
FIG_NO_HZ_FULL=y, set the specified list of CPUs whose tick will be stopped whenever
possible. The boot CPU will be forced outside the range to maintain the timekeeping. The CPUs
in this range must also be included in the rcu_nocbs= set. Specifies the adaptive-ticks CPU cores,
causing kernel to avoid sending scheduling-clock interrupts to listed cores as long as they have a
single runnable task. [KNL - Is a kernel start-up parameter, SMP - The kernel is an SMP kernel].
https:/www.kernel.org/doc/Documentation/timers/NO_HZ.txt

e rcu_nocbs - [KNL] In kernels built with CONFIG_RCU_NOCB_CPU-=y, set the specified list of CPUs
to be no-callback CPUs, that never queue RCU callbacks (read-copy update). https:/www.kernel.
org/doc/Documentation/admin-guide/kernel-parameters.txt

e numa_balancing=disable - [KNL,X86] Disable automatic NUMA balancing.
¢ intel_iommu=enable - [DMAR] Enable Intel IOMMU driver (DMAR) option.
e iommu=on, iommu=pt - [x86, IA-64] Disable IOMMU bypass, using IOMMU for PCI devices.

e nmi_watchdog=0 - [KNL,BUGS=X86] Debugging features for SMP kernels. Turn hardlockup detec-
tor in nmi_watchdog off.

e nosoftlockup - [KNL] Disable the soft-lockup detector.

¢ tsc=reliable - Disable clocksource stability checks for TSC. [x86] reliable: mark tsc clocksource as
reliable, this disables clocksource verification at runtime, as well as the stability checks done at
bootup. Used to enable high-resolution timer mode on older hardware, and in virtualized environ-
ment.

e hpet=disable - [X86-32,HPET] Disable HPET and use PIT instead.
Hugepages Configuration
Huge pages are namaged via sysctl configuration located in /etc/sysctl.d/90-csit.conf on each testbed.

Default huge page size is 2M. The exact amount of huge pages depends on testbed. All the values are
defined in Ansible inventory - hosts files.

2.8.10 DUT Settings - VPP

VPP Version

VPP-20.01 release

336 Chapter 2. VPP Performance



https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt
https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt
https://www.kernel.org/doc/Documentation/timers/NO_HZ.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt

CSIT REPORT, Release rls2001

VPP Compile Parameters

FD.io VPP compile job19>

VPP Install Parameters

$ dpkg -i --force-all *vppx

VPP Startup Configuration

VPP startup configuration vary per test case, with different settings for $$CORELIST_WORKERS,
$$NUM_RX_QUEUES, $$UIO_DRIVER, $$NUM- MBUFS and $$NO_MULTI_SEG parameter. Default tem-
plate is provided below:

ip

heap-size 4G
}
statseg
{
size 4G
3
unix
{
cli-listen /run/vpp/cli.sock
log /tmp/vpe.log
nodaemon
3
socksvr {
socket-name /run/vpp/api.sock

ip6

{
heap-size 4G
hash-buckets 2000000

3

heapsize 4G

plugins

{
plugin default
{

disable
}
plugin dpdk_plugin.so
{
enable

}

3

cpu

{
corelist-workers $$CORELIST_WORKERS
main-core 1

3

dpdk

{
num-mbuf's $$NUM-MBUFS
uio-driver $$UIO_DRIVER

(continues on next page)

105 https://jenkins.fd.io/view/vpp/job/vpp-merge-2001-ubuntu1804/

2.8. Test Environment 337



https://jenkins.fd.io/view/vpp/job/vpp-merge-2001-ubuntu1804/

CSIT REPORT, Release rls2001

(continued from previous page)

$$NO_MULTI_SEG
log-level debug
dev default
{
num-rx-queues $$NUM_RX_QUEUES
}
no-tx-checksum-offload
dev $$DEV_1
dev $$DEV_2

Description of VPP startup settings used in CSIT is provided in Test Methodology (page 13).

2.8.11 TG Settings - TRex
TG Version

TRex v2.73

DPDK Version

DPDK v19.05

TG Build Script Used

TRex installation0¢

TG Startup Configuration

$ cat /etc/trex_cfg.yaml

- version : 2
interfaces : ["0000:0d:00.0","0000:0d:00.1"]
port_info
- dest_mac : [0x3c,0xfd,0xfe,0x9c,Oxee,0xf5]
src_mac : [0x3c,0xfd,0xfe,@x9c,Oxee,0xf4]
- dest_mac : [0x3c,oxfd,oxfe,0x9c,0xee,0xf4]
src_mac : [0x3c,0xfd,0xfe,0x9c,0xee,0xf5]
TG Startup Command

$ sh -c 'cd <t-rex-install-dir>/scripts/ && sudo nohup ./t-rex-64 -i -c 7 --prefix $(hostname) --
—hdrh > /tmp/trex.log 2>&1 &'> /dev/null

TG API Driver

TRex driver0?

106 https://git.fd.io/csit/tree/resources/tools/trex/trex_installer.sh?h=rls2001
107 https://git.fd.io/csit/tree/resources/tools/trex/trex_stateless_profile.py?h=rls2001

338 Chapter 2. VPP Performance



https://git.fd.io/csit/tree/resources/tools/trex/trex_installer.sh?h=rls2001
https://git.fd.io/csit/tree/resources/tools/trex/trex_stateless_profile.py?h=rls2001

CSIT REPORT, Release rls2001

2.9 Documentation

2.9.1 Container Orchestration in CSIT

Overview

Linux Containers

Linux Containers is an OS-level virtualization method for running multiple isolated Linux systems (con-
tainers) on a compute host using a single Linux kernel. Containers rely on Linux kernel cgroups func-
tionality for controlling usage of shared system resources (i.e. CPU, memory, block 1/O, network) and for
namespace isolation. The latter enables complete isolation of applications’ view of operating environ-
ment, including process trees, networking, user IDs and mounted file systems.

LXC (Linux Containers) combine kernel’s cgroups and support for isolated namespaces to provide an
isolated environment for applications. Docker does use LXC as one of its execution drivers, enabling
image management and providing deployment services. More information in [Ixc], [Ixcnamespace] and
[stgraber].

Linux containers can be of two kinds: privileged containers and unprivileged containers.

Unprivileged Containers

Running unprivileged containers is the safest way to run containers in a production environment. From
LXC 1.0 one can start a full system container entirely as a user, allowing to map a range of UIDs on the
host into a namespace inside of which a user with UID O can exist again. In other words an unprivileged
container does mask the userid from the host, making it impossible to gain a root access on the host even
if a user gets root in a container. With unprivileged containers, non-root users can create containers and
will appear in the container as the root, but will appear as userid <non-zero> on the host. Unprivileged
containers are also better suited to supporting multi-tenancy operating environments. More information
in [Ixcsecurity] and [stgraber].

Privileged Containers

Privileged containers do not mask UIDs, and container UID 0 is mapped to the host UID 0. Security and
isolation is controlled by a good configuration of cgroup access, extensive AppArmor profile preventing
the known attacks as well as container capabilities and SELinux. Here a list of applicable security control
mechanisms:

e Capabilities - keep (whitelist) or drop (blacklist) Linux capabilities, [capabilities].

e Control groups - cgroups, resource bean counting, resource quotas, access restrictions, [cgroup1],
[cgroup2].

e AppArmor - apparmor profiles aim to prevent any of the known ways of escaping a container or
cause harm to the host, [apparmor].

e SELinux - Security Enhanced Linux is a Linux kernel security module that provides similar function
to AppArmor, supporting access control security policies including United States Department of
Defense-style mandatory access controls. Mandatory access controls allow an administrator of a
system to define how applications and users can access different resources such as files, devices,
networks and inter- process communication, [selinux].

e Seccomp - secure computing mode, enables filtering of system calls, [seccomp].
More information in [Ixcsecurity] and [Ixcsecfeatures].

Linux Containers in CSIT

2.9. Documentation 339



CSIT REPORT, Release rls2001

CSIT is using Privileged Containers as the sysfs is mounted with RW access. Sysfs is required to be
mounted as RW due to VPP accessing /sys/bus/pci/drivers/uio_pci_generic/unbind. This is not the
case of unprivileged containers where sysfs is mounted as read-only.

Orchestrating Container Lifecycle Events

Following Linux container lifecycle events need to be addressed by an orchestration system:

1. Acquire - acquiring/downloading existing container images via docker pull or lxc-create -t
download.

2. Build - building a container image from scratch or another container image via docker build
<dockerfile/composefile> or customizing LXC templates in GitHub8,

3. (Re-)Create - creating a running instance of a container application from anew, or re-creating one
that failed. A.k.a. (re-)deploy via docker run or 1xc-start

4. Execute - execute system operations within the container by attaching to running container. THis
is done by 1xc-attach or docker exec

5. Distribute - distributing pre-built container images to the compute nodes. Currently not imple-
mented in CSIT.

Container Orchestration Systems Used in CSIT

Current CSIT testing framework integrates following Linux container orchestration mechanisms:

e LXC/Docker for complete VPP container lifecycle control.

LXC

LXC is the well-known and heavily tested low-level Linux container runtime [Ixcsource], that provides
a userspace interface for the Linux kernel containment features. With a powerful API and simple tools,
LXC enables Linux users to easily create and manage system or application containers. LXC uses following
kernel features to contain processes:

e Kernel namespaces: ipc, uts, mount, pid, network and user.
e AppArmor and SELinux security profiles.

e Seccomp policies.

Chroot.

e Cgroups.

CSIT uses LXC runtime and LXC usertools to test VPP data plane performance in a range of virtual net-
working topologies.

Known Issues

e Current CSIT restriction: only single instance of Ixc runtime due to the cgroup policies used in CSIT.
There is plan to add the capability into code to create cgroups per container instance to address this
issue. This sort of functionality is better supported in LXC 2.1 but can be done is current version as
well.

e CSIT code is currently using cgroup to control the range of CPU cores the LXC container runs on.
VPP thread pinning is defined vpp startup.conf.

108 https://github.com/Ixc/Ixc/tree/master/templates

340 Chapter 2. VPP Performance


https://github.com/lxc/lxc/tree/master/templates

CSIT REPORT, Release rls2001

Docker

Docker builds on top of Linux kernel containment features, and offers a high-level tool for wrapping the
processes, maintaining and executing them in containers [docker]. Currently it using runc a CLI tool for
spawning and running containers according to the OCI specification®?

A Docker container image is a lightweight, stand-alone, executable package of a piece of software that
includes everything needed to run it: code, runtime, system tools, system libraries, settings.

CSIT uses Docker to manage the maintenance and execution of containerized applications used in CSIT
performance tests.

e Data plane thread pinning to CPU cores - Docker CLI and/or Docker configuration file controls the
range of CPU cores the Docker image must run on. VPP thread pinning defined vpp startup.conf.

Implementation

CSIT container orchestration is implemented in CSIT Level-1 keyword Python libraries following the
Builder design pattern. Builder design pattern separates the construction of a complex object from its rep-
resentation, so that the same construction process can create different representations e.g. LXC, Docker,
other.

CSIT Robot Framework keywords are then responsible for higher level lifecycle control of of the named
container groups. One can have multiple named groups, with 1..N containers in a group performing dif-
ferent role/functionality e.g. NFs, Switch, Kafka bus, ETCD datastore, etc. ContainerManager class acts
as a Director and uses ContainerEngine class that encapsulate container control.

Current CSIT implementation is illustrated using UML Class diagram:

1. Acquire

2. Build

3. (Re-)Create

4. Execute
e +
| RF Keywords (high level lifecycle control) |
T e +

Construct VNF containers on all DUTs

| |
| Acquire all '$ ' containers |
| Create all '$ ' containers |
| Install all '$ ' containers |
| Configure all '$ ' containers |
| Stop all '$ ' containers |
| Destroy all '$ ' containers |
Fom e e +

|1

|

| 1..N
+-—-————-——————————— Ve e e + +--—-—— +
| ContainerManager | | ContainerEngine |
e + it +
| __init()__ | | __init(node)__ |
| construct_container() | | acquire(force)
| construct_containers() | | create() |
| acquire_all_containers() | | stop() |
| create_all_containers() | 1 1 | destroy() |
| execute_on_container() <S>------- | info() |
| execute_on_all_containers() | | execute(command) |

109 https://www.opencontainers.org/

(continues on next page)

2.9. Documentation

341



https://www.opencontainers.org/

CSIT REPORT, Release rls2001

(continued from previous page)

| install_vpp_in_all_containers() |
| configure_vpp_in_all_containers() |
| stop_all_containers() |
| destroy_all_containers() |

system_info()
install_supervisor()
install_vpp()
restart_vpp()

create_vpp_startup_config
is_container_running()
is_container_present()

|
|
|
|
create_vpp_exec_config() |
|
|
|
_configure_cgroup() |

o A +
|
|
|
o Fo—————— +
| |
Fo————— Fom———— + Fo————— Fomm———— +
| LXC | | Docker |
Fomm - + o +
| (inherinted) | | (inherinted) |
+—————- - + +-———— +—————— +
| |
Fommm Fommm +
|
| constructs
|
Fo—————— V————————= +
| Container |
o +

| __getattr__(a) |
setattr__(a, v) |

Sequentional diagram that illustrates the creation of a single container.

Legend:
e = engine [Docker|LXC]
. = kwargs (variable number of keyword argument)
et + Fom - + o +
| RF KW | | ContainerManager | | ContainerEngine |
+o——t———t Fomm Fom + tom tomm +

|
| 1: new ContainerManager(e) | |
|

Fot e >+-+

|- |-] 2: new ContainerEngine |

=1 | === >+-+

[ -1 [-1

1= +-+ +—+

[ | |

|-| 3: construct_container(..) | |

| === >+-+ |

[ [=] 4: init() |

=1 | === >+-+

|- [ =] |- 5: new +-—-——--—---—- +
[-] [-1] [=+==mmm- >| Container A |
-1 -1 -1 #ommmmmooooos +
-1 |- |<mmmmmmm oo +|

=1 +-+ +—+

[-1 | |
|-| 6: acquire_all_containers() | |
| === >+-+ |

(continues on next page)

342 Chapter 2. VPP Performance




CSIT REPORT, Release rls2001

(continued from previous page)

=1 [-] 7: acquire() |

=1 | === >+-+

-1 [ [

-1 -1 |-+-m+

[ [ [-] | 8: is_container_present()

-] [-] True/False |-|<-+

=1 -1 [=1

[-1 [ [=1
R et it +
| |-| ALT [isRunning & force] [-1 [=]--+ |
[1-1 [ [=1 | 8a: destroy() |
(b [ [-<--+ |
e +

[-1 [ [=1

=1 +-+ +-+

[ | |

|-| 9: create_all_containers() | |

B e L e L E L P P L b et >+-+ |

|- [-] 10: create() |

=1 | === >+-+

-1 -1 |-+-mt

[-1 [-1 [=] | 117: wait('RUNNING')

-1 -1 |-<=-+

=1 +-+ +-+

[ | |
o +
[ |-] ALT | | |
[ |-|] (install_vpp, configure_vpp) | | |
(I | | |
R et et ettt +

[ | |

|-] 12: destroy_all_containers() | |

B e >+-+ |

|- =] 13: destroy() |

-1 [ e >+—+

-1 -1 [=1

=1 +-+ +—+

[-1 | |

+++ | |

| | |

+ + +

Container Data Structure

Container is represented in Python L1 library as a separate Class with instance variables and no methods
except overriden __getattr__and __setattr__. Instance variables are assigned to container dynamically
during the construct_container (xxkwargs) call and are passed down from the RF keyword.

Usage example:

Construct VNF containers on all DUTs

[Arguments] | ${technology} | ${image} | ${cpu_count}=${1} | ${count}=${1}

${group}= | Set Variable | VNF

${skip_cpus}= | Evaluate | ${vpp_cpus}+${system_cpus}

Import Library | resources.libraries.python.ContainerUtils.ContainerManager
| engine=${container_engine} | WITH NAME | ${group}

${duts}= | Get Matches | ${nodes} | DUT*

:FOR | ${dut} | IN | @{duts}

(continues on next page)

2.9. Documentation

343




CSIT REPORT, Release rls2001

(continued from previous page)

| ${env}= | Create List | DEBIAN_FRONTEND=noninteractive

| ${mnt}= | Create List | /tmp:/mnt/host | /dev:/dev

| ${cpu_node}= | Get interfaces numa node | ${nodes['${dut}']}

| | ${dut1_if1} | ${dut1_if2}

| Run Keyword | ${group}.Construct containers

| .| name=${dut}_${group} | node=${nodes['${dut}'1} | mnt=${mnt}
| . | image=${container_image} | cpu_count=${container_cpus}

| . | cpu_skip=${skip_cpus} | cpuset_mems=${cpu_node}

| ... | cpu_shared=${False} | env=${env} | count=${container_count}
| ... | install_dkms=${container_install_dkms}

A

[
[
[
[
[
[
[
[
[
[
| | Append To List | ${container_groups} | ${group}

Mandatory parameters to create standalone container are: node, name, image [imagevar], cpu_count,
cpu_skip, cpuset_mems, cpu_shared.

There is no parameters check functionality. Passing required arguments is in coder responsibility. All the
above parameters are required to calculate the correct cpu placement. See documentation for the full
reference.

Kubernetes

For the future use, Kubernetes [k8sdoc] is implemented as separate library KubernetesUtils.py, with a
class with the same name. This utility provides an API for L2 Robot Keywords to control kubectl installed
on each of DUTs. One time initialization script, resources/libraries/bash/k8s_setup.sh does reset/init
kubectl, and initializes the csit namespace. CSIT namespace is required to not to interfere with existing
setups and it further simplifies apply/get/delete Pod/ConfigMap operations on SUTs.

Kubernetes utility is based on YAML templates to avoid crafting the huge YAML configuration files, what
would lower the readability of code and requires complicated algorithms.

Two types of YAML templates are defined:

e Static - do not change between deployments, that is infrastructure containers like Kafka, Calico,
ETCD.

e Dynamic - per test suite/case topology YAML files.

Making own python wrapper library of kubectl instead of using the official Python package allows to
control and deploy environment over the SSH library without the need of using isolated driver running
on each of DUTs.

Tested Topologies

Listed CSIT container networking test topologies are defined with DUT containerized VPP switch for-
warding packets between NF containers. Each NF container runs their own instance of VPP in L2XC
configuration.

Following container networking topologies are tested in CSIT-2001:
e LXC topologies:
- eth-12xcbase-eth-2memif-1Ixc.
- eth-12bdbasemaclrn-eth-2memif-1Ixc.
o Docker topologies:
- eth-12xcbase-eth-2memif-1docker.

- eth-I2xcbase-eth-1memif-1docker

344 Chapter 2. VPP Performance




CSIT REPORT, Release rls2001

References

2.9.2 Test Code Documentation

CSIT VPP Performance Tests Documentation?* contains detailed functional description and input pa-
rameters for each test case.

124 https://docs.fd.io/csit/rls2001/doc/tests.vpp.perf.html

2.9. Documentation 345


https://docs.fd.io/csit/rls2001/doc/tests.vpp.perf.html

CHAPTER
THREE

DPDK PERFORMANCE

3.1 Overview

DPDK performance test results are reported for all three physical testbed types present in FD.io labs: 3-
Node Xeon Haswell (3n-hsw), 3-Node Xeon Skylake (3n-skx), 2-Node Xeon Skylake (2n-skx) and installed
NIC models. For description of physical testbeds used for DPDK performance tests please refer to Physical
Testbeds (page 4).

3.1.1 Logical Topologies

CSIT DPDK performance tests are executed on physical testbeds described in Physical Testbeds (page 4).
Based on the packet path through server SUTs, one distinct logical topology type is used for DPDK DUT
data plane testing: NIC-to-NIC switching topology.

NIC-to-NIC Switching

The simplest logical topology for software data plane application like DPDK is NIC-to-NIC switching.
Tested topologies for 2-Node and 3-Node testbeds are shown in figures below.

346



CSIT REPORT, Release rls2001

2-Node Topology: NIC-to-NIC Switching

System Under Test (SUT)

Linux
Kernel

Linux-H

_H&H_

Traffic Generator (TG)

3-Node Topology: NIC-to-NIC Switching

System Under Test 1 (SUT1) System Under Test 2 (SUT2)
Linux Linux D
Kernel Kernel
-
NIC | NIC
Traffic Generator (TG)

Server Systems Under Test (SUT) run DPDK Testpmd or L3fwd application in Linux user-mode as a Device
Under Test (DUT). Server Traffic Generator (TG) runs T-Rex application. Physical connectivity between
SUTs and TG is provided using different drivers and NIC models that need to be tested for performance
(packet/bandwidth throughput and latency).

From SUT and DUT perspectives, all performance tests involve forwarding packets between two physical
Ethernet ports (10GE, 25GE, 40GE, 100GE). In most cases both physical ports on SUT are located on the
same NIC. The only exceptions are link bonding and 100GE tests. In the latter case only one port per NIC
can be driven at linerate due to PCle Gen3 x16 slot bandwidth limiations. 100GE NICs are not supported
in PCle Gen3 x8 slots.

3.1. Overview 347



CSIT REPORT, Release rls2001

Note that reported DPDK DUT performance results are specific to the SUTs tested. SUTs with other
processors than the ones used in FD.io lab are likely to yield different results. A good rule of thumb, that
can be applied to estimate DPDK packet thoughput for NIC-to-NIC switching topology, is to expect the
forwarding performance to be proportional to processor core frequency for the same processor architec-
ture, assuming processor is the only limiting factor and all other SUT parameters are equivalent to FD.io

CSIT environment.

3.1.2 Performance Tests Coverage

Performance tests measure following metrics for tested DPDK DUT topologies and configurations:

e Packet Throughput: measured in accordance with RFC 2544125 using FD.io CSIT Multiple Loss
Ratio search (MLRsearch), an optimized binary search algorithm, producing throughput at different
Packet Loss Ratio (PLR) values:

- Non Drop Rate (NDR): packet throughput at PLR=0%.
- Partial Drop Rate (PDR): packet throughput at PLR=0.5%.

e One-Way Packet Latency: measured at different offered packet loads:
- 100% of discovered NDR throughput.
- 100% of discovered PDR throughput.

e Maximum Receive Rate (MRR): measured packet forwarding rate under the maximum load offered
by traffic generator over a set trial duration, regardless of packet loss. Maximum load for specified
Ethernet frame size is set to the bi-directional link rate.

CSIT-2001 includes following DPDK Testpmd and L3fwd data plane functionality performance tested
across a range of NIC drivers and NIC models:

Functionality Description

L2IntLoop L2 Interface Loop forwarding all Ethernet frames between two Interfaces.

IPv4  Routed | Longest Prefix Match (LPM) L3 IPv4 forwarding of Ethernet frames between two
Forwarding Interfaces, with two /8 prefixes in lookup table.

3.2 Release Notes

3.2.1 Changes in CSIT-2001

1. DPDK PERFORMANCE TESTS

¢ Intel Xeon 2n-skx, 3n-skx and 2n-clx testbeds: Testpmd and L3fwd performance test data
is not included in this report version. This is due to the lower performance and behaviour
inconsistency of these systems following the upgrade of processor microcode packages (skx
ucode 0x2000064, clx ucode 0x500002c) as part of updating Ubuntu 18.04 LTS kernel ver-
sion. Tested VPP and DPDK applications (L3fwd) are affected. Skx and Clx test data will be
added in subsequent maintenance report version(s) once the issue is resolved. See Known
Issues (page 348).

2. DPDK RELEASE VERSION CHANGE
e CSIT-2001 tested DPDK-19.08, as used by VPP-20.01 release.
3. TEST ENVIRONMENT

125 https://tools.ietf.org/html/rfc2544.html

348

Chapter 3. DPDK Performance


https://tools.ietf.org/html/rfc2544.html

CSIT REPORT, Release rls2001

e TRex Fortville NIC Performance: Received FVL fix from Intel resolving TRex low throughput
issue. TRex per FVL NIC throughput increased from ~27 Mpps to the nominal ~37 Mpps. For
detail see CSIT-1503126 and TRex-519127].

¢ New Intel Xeon Cascadelake Testbeds: Added performance tests for 2-Node-Cascadelake (2n-
clx) testbeds with x710, xxv710 and mcx556a-edat NIC cards.

3.2.2 Known Issues

List of known issues in CSIT-2001 for DPDK performance tests:

# | Ji- Issue Description
ralD
8 | CSITq Intel Xeon 2n-skx, 3n-skx and 2n-clIx testbeds behaviour and performance became incon-
1675 istent following the upgrade to the latest Ubuntu 18.04 LTS kernel version (4.15.0-72-

generic) and associated microcode packages (skx ucode 0x2000064, clx ucode 0x500002c¢).
VPP as well as DPDK L3fwd tests are affected.

126 https://jira.fd.io/browse/CSIT-1503
127 https://trex-tgn.cisco.com/youtrack/issue/trex-519
128 https:/fjira.fd.io/browse/CSIT-1675

3.2. Release Notes 349


https://jira.fd.io/browse/CSIT-1503
https://trex-tgn.cisco.com/youtrack/issue/trex-519
https://jira.fd.io/browse/CSIT-1675
https://jira.fd.io/browse/CSIT-1675

CSIT REPORT, Release rls2001

3.3 Packet Throughput

Throughput graphs are generated by multiple executions of the same performance tests across physical
testbeds hosted LF FD.io labs: 3n-hsw, 2n-skx, 3n-skx, 2n-clx. Box-and-Whisker plots are used to display
variations in measured throughput values, without making any assumptions of the underlying statistical
distribution.

For each test case, Box-and-Whisker plots show the quartiles (Min, 1st quartile / 25th percentile, 2nd
quartile / 50th percentile / mean, 3rd quartile / 75th percentile, Max) across collected data set. Outliers
are plotted as individual points.

Additional information about graph data:

1. Graph Title: describes tested packet path, testbed topology, processor model, NIC model, packet
size, number of cores and threads used by data plane workers and indication of DPDK DUT config-
uration.

2. X-axis Labels: indices of individual test suites as listed in Graph Legend.
3. Y-axis Labels: measured Packets Per Second [pps] throughput values.

4. Graph Legend: lists X-axis indices with associated CSIT test suites executed to generate graphed
test results.

5. Hover Information: lists minimum, first quartile, median, third quartile, and maximum. If either
type of outlier is present the whisker on the appropriate side is taken to 1.5xIQR from the quartile
(the “inner fence”) rather than the max or min, and individual outlying data points are displayed as
unfilled circles (for suspected outliers) or filled circles (for outliers). (The “outer fence” is 3xIQR from
the quartile.)

Note: Test results have been generated by FD.io test executor dpdk performance job 2n-skx'??, FD.io test
executor dpdk performance job 3n-skx12°, FD.io test executor dpdk performance job 2n-cIx!3!, FD.io test
executor dpdk performance job 3n-hsw!32, ‘FD.io test executor dpdk performance job 3n-tsh‘_, ‘FD.io
test executor dpdk performance job 2n-dnv‘_ and ‘FD.io test executor dpdk performance job 3n-dnv‘_
with RF result files csit-dpdk-perf-2001-*.zip archived here. Required per test case data set size is 10 and
for DPDK tests this is the actual size, as all scheduled test executions completed successfully.

129 https://jenkins.fd.io/view/csit/job/csit-dpdk-perf-verify-2001-2n-skx
130 https://jenkins.fd.io/view/csit/job/csit-dpdk-perf-verify-2001-3n-skx
131 https://jenkins.fd.io/view/csit/job/csit-dpdk-perf-verify-2001-2n-clx

132 https://jenkins.fd.io/view/csit/job/csit-dpdk-perf-verify-2001-3n-hsw

350 Chapter 3. DPDK Performance


https://jenkins.fd.io/view/csit/job/csit-dpdk-perf-verify-2001-2n-skx
https://jenkins.fd.io/view/csit/job/csit-dpdk-perf-verify-2001-3n-skx
https://jenkins.fd.io/view/csit/job/csit-dpdk-perf-verify-2001-3n-skx
https://jenkins.fd.io/view/csit/job/csit-dpdk-perf-verify-2001-2n-clx
https://jenkins.fd.io/view/csit/job/csit-dpdk-perf-verify-2001-3n-hsw
https://jenkins.fd.io/view/csit/job/csit-dpdk-perf-verify-2001-3n-hsw

CSIT REPORT, Release rls2001

3.3.1 3n-hsw-x1710

Following sections include summary graphs of Phy-to-Phy performance with packet routed forwarding,
including NDR throughput (zero packet loss) and PDR throughput (<0.5% packet loss).

CSIT source code for the test cases used for plots can be found in CSIT git repository33.

133 https:/git.fd.io/csit/tree/tests/dpdk/perf?h=rls2001

3.3. Packet Throughput 351


https://git.fd.io/csit/tree/tests/dpdk/perf?h=rls2001

CSIT REPORT, Release ris2001

64b-1tlc-base

Throughput: 3n-hsw-xI710-64b-1t1c-base-néy & [ E @ 0 @ = Hl

30.0

N
wn
o

Packet Throughput [Mpps]
o S
o o

10.0

5.00

0.00

Test Cases [Index]

£ 1.(10 runs) eth-I2xcbase-testpmd  E1 2. (10 runs) ethip4-ip4base-I3fwd

352

Chapter 3. DPDK Performance



CSIT REPORT, Release rls2001

Throughput: 3n-hsw-xI710-64b-1t1c-base-pdi & «= H
—_—
35.0
30.0

N
u
o

Packet Throughput [Mpps]
o N
o o

10.0

5.00

0.00

Test Cases [Index]

O 1.(10 runs) eth-12xcbase-testpmd E 2. (10 runs) ethip4-ip4base-I3fwd

3.3. Packet Throughput 353



CSIT REPORT, Release ris2001

64b-2t2c-base

Throughput: 3n-hsw-xI710-64b-2t2c-base-ndy & = [ H @ 0 @ = Ml

30.0

N
wn
o

Packet Throughput [Mpps]
o S
o o

10.0

5.00

0.00

Test Cases [Index]

£ 1.(10 runs) eth-I2xcbase-testpmd  E1 2. (10 runs) ethip4-ip4base-I3fwd

354

Chapter 3. DPDK Performance



CSIT REPORT, Release rls2001

Throughput: 3n-hsw-xI710-64b-2t2c-base-pdr a - i}

35.0

30.0

N
u
o

20.0

Packet Throughput [Mpps]
o
o

10.0

5.00

0.00

Test Cases [Index]

O 1.(10 runs) eth-12xcbase-testpmd E 2. (10 runs) ethip4-ip4base-I3fwd

3.3. Packet Throughput 355



CSIT REPORT, Release rls2001

3.3.2 3n-hsw-x710

Following sections include summary graphs of Phy-to-Phy performance with packet routed forwarding,
including NDR throughput (zero packet loss) and PDR throughput (<0.5% packet loss).

CSIT source code for the test cases used for plots can be found in CSIT git repository134.

134 https: /git.fd.io/csit/tree/tests/dpdk/perf?h=rls2001

356 Chapter 3. DPDK Performance


https://git.fd.io/csit/tree/tests/dpdk/perf?h=rls2001

CSIT REPORT, Release rls2001

64b-1tlc-base

Throughput: 3n-hsw-x710-64b-1t1c-base-ndf a - i}

30.0

20.0

Packet Throughput [Mpps]
o
o

5.00

0.00

Test Cases [Index]

O 1.(10 runs) eth-12xcbase-testpmd E 2. (10 runs) ethip4-ip4base-I3fwd

3.3. Packet Throughput 357



CSIT REPORT, Release rls2001

Throughput: 3n-hsw-x710-64b-1t1c-base-pdr’ & «= H

30.0

20.0

Packet Throughput [Mpps]
o
o

10.0

5.00

0.00

Test Cases [Index]

O 1.(10 runs) eth-12xcbase-testpmd E 2. (10 runs) ethip4-ip4base-I3fwd

358

Chapter 3. DPDK Performance



CSIT REPORT, Release rls2001

64b-2t2c-base

Throughput: 3n-hsw-x710-64b-2t2c-base-ndf a - i}

30.0

20.0

Packet Throughput [Mpps]
o
o

5.00

0.00

Test Cases [Index]

O 1.(10 runs) eth-12xcbase-testpmd E 2. (10 runs) ethip4-ip4base-I3fwd

3.3. Packet Throughput 359



CSIT REPORT, Release rls2001

Throughput: 3n-hsw-x710-64b-2t2c-base-pdfr’ & «= H

30.0

20.0

Packet Throughput [Mpps]
o
o

10.0

5.00

0.00

Test Cases [Index]

O 1.(10 runs) eth-12xcbase-testpmd E 2. (10 runs) ethip4-ip4base-I3fwd

360

Chapter 3. DPDK Performance



CSIT REPORT, Release rls2001

3.3.3 2n-dnv-x553

Following sections include summary graphs of Phy-to-Phy performance with packet routed forwarding,
including NDR throughput (zero packet loss) and PDR throughput (<0.5% packet loss).

CSIT source code for the test cases used for plots can be found in CSIT git repository3°.

135 https:/git.fd.io/csit/tree/tests/dpdk/perf?h=rls2001

3.3. Packet Throughput 361


https://git.fd.io/csit/tree/tests/dpdk/perf?h=rls2001

CSIT REPORT, Release rls2001

64b-1tlc-base

Throughput: 2n-dnv-x553-64b-1t1c-base-nd¥ a - i}

20.0

—
w
o

10.0

Packet Throughput [Mpps]

5.00

0.00

Test Cases [Index]

O 1.(09 runs) eth-12xcbase-testpmd E 2. (09 runs) ethip4-ip4base-I3fwd

362

Chapter 3. DPDK Performance



CSIT REPORT, Release rls2001

Throughput: 2n-dnv-x553-64b-1t1c-base-pdr a - i}
25.0

20.0

15.0

Packet Throughput [Mpps]
S
o

5.00

0.00

Test Cases [Index]

O 1.(09 runs) eth-12xcbase-testpmd E 2. (09 runs) ethip4-ip4base-I3fwd

3.3. Packet Throughput 363



CSIT REPORT, Release rls2001

64b-2t2c-base

Throughput: 2n-dnv-x553-64b-2t2c-base-nd¥ a - i}

30.0

20.0

Packet Throughput [Mpps]
o
o

5.00

0.00

Test Cases [Index]

O 1.(10 runs) eth-12xcbase-testpmd E 2. (10 runs) ethip4-ip4base-I3fwd

364

Chapter 3. DPDK Performance



CSIT REPORT, Release rls2001

Throughput: 2n-dnv-x553-64b-2t2c-base-pdi’ & - i}

30.0

20.0

Packet Throughput [Mpps]
o
o

10.0

5.00

0.00

Test Cases [Index]

O 1.(10 runs) eth-12xcbase-testpmd E 2. (10 runs) ethip4-ip4base-I3fwd

3.3. Packet Throughput 365



CSIT REPORT, Release rls2001

3.3.4 3n-dnv-x553

Following sections include summary graphs of Phy-to-Phy performance with packet routed forwarding,
including NDR throughput (zero packet loss) and PDR throughput (<0.5% packet loss).

CSIT source code for the test cases used for plots can be found in CSIT git repository3¢.

136 https:/git.fd.io/csit/tree/tests/dpdk/perf?h=rls2001

366 Chapter 3. DPDK Performance


https://git.fd.io/csit/tree/tests/dpdk/perf?h=rls2001

CSIT REPORT, Release rls2001

64b-1tlc-base

Throughput: 3n-dnv-x553-64b-1t1c-base-nd¥ a - i}

20.0

—
w
o

10.0

Packet Throughput [Mpps]

5.00

0.00

Test Cases [Index]

O 1.(10 runs) eth-12xcbase-testpmd E 2. (10 runs) ethip4-ip4base-I3fwd

3.3. Packet Throughput 367



CSIT REPORT, Release rls2001

Throughput: 3n-dnv-x553-64b-1t1c-base-pdr a - i}

-
u
o

Packet Throughput [Mpps]
S
o

5.00

0.00

Test Cases [Index]

O 1.(10 runs) eth-12xcbase-testpmd E 2. (10 runs) ethip4-ip4base-I3fwd

368

Chapter 3. DPDK Performance



CSIT REPORT, Release rls2001

64b-2t2c-base

Throughput: 3n-dnv-x553-64b-2t2c-base-nd¥ a - i}

30.0

20.0

Packet Throughput [Mpps]
o
o

5.00

0.00

Test Cases [Index]

O 1.(10 runs) eth-12xcbase-testpmd E 2. (10 runs) ethip4-ip4base-I3fwd

3.3. Packet Throughput 369



CSIT REPORT, Release rls2001

Throughput: 3n-dnv-x553-64b-2t2c-base-pdi’ & - i}

30.0

20.0

Packet Throughput [Mpps]
o
o

10.0

5.00

0.00

Test Cases [Index]

O 1.(10 runs) eth-12xcbase-testpmd E 2. (10 runs) ethip4-ip4base-I3fwd

370

Chapter 3. DPDK Performance



CSIT REPORT, Release rls2001

3.3.5 3n-tsh-x520

Following sections include summary graphs of Phy-to-Phy performance with packet routed forwarding,
including NDR throughput (zero packet loss) and PDR throughput (<0.5% packet loss).

CSIT source code for the test cases used for plots can be found in CSIT git repository3’.

137 https:/git.fd.io/csit/tree/tests/dpdk/perf?h=rls2001

3.3. Packet Throughput 371


https://git.fd.io/csit/tree/tests/dpdk/perf?h=rls2001

CSIT REPORT, Release rls2001

64b-1tlc-base

Throughput: 3n-tsh-x520-64b-1t1c-base-nd# a - i}

14.0

12.0

10.0

©
o
s)

Packet Throughput [Mpps]
2
o

4.00

2.00

0.00

Test Cases [Index]

O 1.(08 runs) eth-12xcbase-testpmd E 2. (09 runs) ethip4-ip4base-I3fwd

372

Chapter 3. DPDK Performance



CSIT REPORT, Release rls2001

Throughput: 3n-tsh-x520-64b-1t1c-base-pdr a - i}

14.0

12.0

10.0

8.00

6.00

Packet Throughput [Mpps]

4.00

2.00

0.00

Test Cases [Index]

O 1.(08 runs) eth-12xcbase-testpmd E 2. (09 runs) ethip4-ip4base-I3fwd

3.3. Packet Throughput 373



CSIT REPORT, Release rls2001

64b-2t2c-base

Throughput: 3n-tsh-x520-64b-2t2c-base-ndr a - i}
14.0

12.0

10.0

8.00

6.00

Packet Throughput [Mpps]

4.00

2.00

0.00

Test Cases [Index]

O 1.(08 runs) eth-I2xcbase-testpmd E 2. (10 runs) ethip4-ip4base-I3fwd

374 Chapter 3. DPDK Performance



CSIT REPORT, Release rls2001

Throughput: 3n-tsh-x520-64b-2t2c-base-pdr a - i}
14.0

10.0

8.00

6.00

Packet Throughput [Mpps]

4.00

2.00

0.00

Test Cases [Index]

O 1.(08 runs) eth-12xcbase-testpmd E 2. (10 runs) ethip4-ip4base-I3fwd

3.3. Packet Throughput 375



CSIT REPORT, Release rls2001

3.4 Packet Latency

DPDK Testpmd and L3fwd latency results are generated based on the test data obtained from CSIT-2001
NDR-PDR throughput tests executed across physical testbeds hosted in LF FD.io labs: 3n-hsw, 3n-skx,
2n- skx, 2n-clx, 3n-dnv, 2n-dnv, 3n-tsh.

Latency by percentile distribution plots are used to show packet latency percentiles at different packet
rate load levels: i) No-Load latency streams only, ii) Low-Load at 10% PDR, iii) Mid-Load at 50% PDR and
iv) High-Load at 90% PDR.

Additional information about graph data:

1.

au A ODN

Graph Title: describes tested DUT packet path.

. X-axis Labels: percentile of packets.
. Y-axis Labels: measured one-way packet latency values in [uSec].
. Graph Legend: list of latency tests at different packet rate load level.

. Hover Information: packet rate load level, stream direction (East-West, West-East), percentile, one-

way latency.

Note:

Test results have been generated by FD.io test executor dpdk performance job 3n-hsw'38

and ‘FD.io test executor dpdk performance job 3n-tsh’_ with RF result files csit-dpdk-perf-2001-*.zip
archived here.

138 https://jenkins.fd.io/view/csit/job/csit-dpdk-perf-verify-2001-3n-hsw

376

Chapter 3. DPDK Performance


https://jenkins.fd.io/view/csit/job/csit-dpdk-perf-verify-2001-3n-hsw

CSIT REPORT, Release rls2001

3.4.1 3n-hsw-x1710

CSIT source code for the test cases used for plots can be found in CSIT git repository3?.

139 https:/git.fd.io/csit/tree/tests/dpdk/perf?h=rls2001

3.4. Packet Latency 377


https://git.fd.io/csit/tree/tests/dpdk/perf?h=rls2001

CSIT REPORT, Release rls2001

64b-1tlc-base

Q - i
Latency: eth-12xcbase-testpmd

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

378 Chapter 3. DPDK Performance



CSIT REPORT, Release rls2001

One-Way Latency per Direction [uSec]

(O} -

Latency: ethip4-ip4base-I3fwd

140
120
100
80
60

40

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

3.4. Packet Latency

379



CSIT REPORT, Release rls2001

3.4.2 3n-tsh-x520

CSIT source code for the test cases used for plots can be found in CSIT git repository14°.

140 https:/git.fd.io/csit/tree/tests/dpdk/perf?h=rls2001

380 Chapter 3. DPDK Performance


https://git.fd.io/csit/tree/tests/dpdk/perf?h=rls2001

CSIT REPORT, Release rls2001

64b-1tlc-base

Q «=H

Latency: eth-12xcbase-testpmd

3000

2500

2000

1500

1000

One-Way Latency per Direction [uSec]

[0
o
o

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

3.4. Packet Latency 381



CSIT REPORT, Release rls2001

e «= M|
Latency: ethip4-ip4base-I3fwd

One-Way Latency per Direction [uSec]

0 25 50 75 100

Percentile [%]

No-load. — Low-load, 10% PDR.
— Mid-load, 50% PDR. —— High-load, 90% PDR.

382 Chapter 3. DPDK Performance



CSIT REPORT, Release rls2001

3.5 Comparisons

3.5.1 Current vs. Previous Release

Relative comparison of DPDK Testpmd and L3fwd packet throughput (NDR, PDR and MRR) between
DPDK-19.08 and DPDK-19.05 (measured for CSIT-2001 and CSIT-1908 respectively) is calculated from
results of tests running on 3-Node Intel Xeon Haswell testbeds (3n-hsw) in 1-core and 2-core configura-
tions.

Listed mean and standard deviation values are computed based on a series of the same tests executed
against respective DPDK releases to verify test results repeatability, with percentage change calculated
for mean values.

Note: Test results have been generated by FD.io test executor dpdk performance job 3n-hsw!4? with RF
result files csit-dpdk-perf-2001-*.zip archived here.

3n-hsw

NDR Comparison

Comparison tables in ASCIl and CSV formats:
ASCII 1t1c NDR comparison

ASCII 2t2c NDR comparison

CSV 1tl1c NDR comparison

CSV 2t2c NDR comparison

PDR Comparison

Comparison tables in ASCIl and CSV formats:
e ASCII 1t1c PDR comparison
e ASCII 2t2c PDR comparison
e CSV 1tlc PDR comparison
e CSV 2t2c PDR comparison

3.6 Throughput Trending

In addition to reporting throughput comparison between DPDK releases, CSIT provides regular perfor-
mance trending for DPDK release branches:

1. Performance Dashboard!#?: per DPDK test case throughput trend, trend compliance and summary
of detected anomalies.

2. Trending Methodology'*3: throughput test metrics, trend calculations and anomaly classification
(progression, regression).

141 https://jenkins.fd.io/view/csit/job/csit-dpdk-perf-verify-2001-3n-hsw
142 https://docs.fd.io/csit/master/trending/introduction/index.html
143 https://docs.fd.io/csit/master/trending/methodology/index.html

3.5. Comparisons 383


https://jenkins.fd.io/view/csit/job/csit-dpdk-perf-verify-2001-3n-hsw
../../_static/dpdk/performance-changes-3n-hsw-1t1c-ndr.txt
../../_static/dpdk/performance-changes-3n-hsw-2t2c-ndr.txt
../../_static/dpdk/performance-changes-3n-hsw-1t1c-ndr.csv
../../_static/dpdk/performance-changes-3n-hsw-2t2c-ndr.csv
../../_static/dpdk/performance-changes-3n-hsw-1t1c-pdr.txt
../../_static/dpdk/performance-changes-3n-hsw-2t2c-pdr.txt
../../_static/dpdk/performance-changes-3n-hsw-1t1c-pdr.csv
../../_static/dpdk/performance-changes-3n-hsw-2t2c-pdr.csv
https://docs.fd.io/csit/master/trending/introduction/index.html
https://docs.fd.io/csit/master/trending/methodology/index.html

CSIT REPORT, Release rls2001

3. DPDK Trendline Graphs'#*: weekly DPDK Testpmd and L3fwd MRR throughput measurements
against the trendline with anomaly highlights and associated CSIT test jobs.

144 https://docs.fd.io/csit/master/trending/trending/dpdk.html

384 Chapter 3. DPDK Performance


https://docs.fd.io/csit/master/trending/trending/dpdk.html

CSIT REPORT, Release rls2001

3.7 Test Environment

3.7.1 Physical Testbeds

FD.io CSIT performance tests are executed in physical testbeds hosted by LF for FD.io project. Two
physical testbed topology types are used:

e 3-Node Topology: Consisting of two servers acting as SUTs (Systems Under Test) and one server as
TG (Traffic Generator), all connected in ring topology.

o 2-Node Topology: Consisting of one server acting as SUTs and one server as TG both connected in
ring topology.

Tested SUT servers are based on a range of processors including Intel Xeon Haswell-SP, Intel Xeon
Skylake-SP, Intel Xeon Cascade Lake-SP, Arm, Intel Atom. More detailed description is provided in Physical
Testbeds (page 4). Tested logical topologies are described in Logical Topologies (page 37).

3.7.2 Server Specifications

Complete technical specifications of compute servers used in CSIT physical testbeds are maintained in
FD.io CSIT repository: FD.io CSIT testbeds - Xeon Cascade Lakel#, FD.io CSIT testbeds - Xeon Skylake,
Arm, Atom4 and FD.io CSIT Testbeds - Xeon Haswell'47,

3.7.3 Pre-Test Server Calibration

Number of SUT server sub-system runtime parameters have been identified as impacting data plane
performance tests. Calibrating those parameters is part of FD.io CSIT pre-test activities, and includes
measuring and reporting following:

1. System level core jitter - measure duration of core interrupts by Linux in clock cycles and how often
interrupts happen. Using CPU core jitter tool'“8.

2. Memory bandwidth - measure bandwidth with Intel MLC tool14?.
3. Memory latency - measure memory latency with Intel MLC tool.

4. Cache latency at all levels (L1, L2, and Last Level Cache) - measure cache latency with Intel MLC
tool.

Measured values of listed parameters are especially important for repeatable zero packet loss throughput
measurements across multiple system instances. Generally they come useful as a background data for
comparing data plane performance results across disparate servers.

Following sections include measured calibration data for testbeds.

3.7.4 Calibration Data - Skylake

Following sections include sample calibration data measured on s11-t31-sutl server running in one of
the Intel Xeon Skylake testbeds as specified in FD.io CSIT testbeds - Xeon Skylake, Arm, Atom?°,

Calibration data obtained from all other servers in Skylake testbeds shows the same or similar values.

145 https://git.fd.io/csit/tree/docs/lab/testbeds_sm_clx_hw_bios_cfg.md?h=rls2001
146 https:/git.fd.io/csit/tree/docs/lab/testbeds_sm_skx_hw_bios_cfg.md?h=rls2001
147 https://git.fd.io/csit/tree/docs/lab/testbeds_ucs_hsw_hw_bios_cfg.md?h=rls2001
148 https://git.fd.io/pma_tools/tree/jitter

149 https://software.intel.com/en-us/articles/intelr-memory-latency-checker

150 https:/git.fd.io/csit/tree/docs/lab/testbeds_sm_skx_hw_bios_cfg.md?h=rls2001

3.7. Test Environment 385


https://git.fd.io/csit/tree/docs/lab/testbeds_sm_clx_hw_bios_cfg.md?h=rls2001
https://git.fd.io/csit/tree/docs/lab/testbeds_sm_skx_hw_bios_cfg.md?h=rls2001
https://git.fd.io/csit/tree/docs/lab/testbeds_sm_skx_hw_bios_cfg.md?h=rls2001
https://git.fd.io/csit/tree/docs/lab/testbeds_ucs_hsw_hw_bios_cfg.md?h=rls2001
https://git.fd.io/pma_tools/tree/jitter
https://software.intel.com/en-us/articles/intelr-memory-latency-checker
https://git.fd.io/csit/tree/docs/lab/testbeds_sm_skx_hw_bios_cfg.md?h=rls2001

CSIT REPORT, Release rls2001

Linux cmdline

$ cat /proc/cmdline

BOOT_IMAGE=/boot/vmlinuz-4.15.0-72-generic root=UUID=e05120bb-7127-43db-bl1e3-ab66edd4c43bd ro.
—isolcpus=1-27,29-55,57-83,85-111 nohz_full=1-27,29-55,57-83,85-111 rcu_nocbs=1-27,29-55,57-83, 85~
—111 numa_balancing=disable intel_pstate=disable intel_iommu=on iommu=pt nmi_watchdog=0 audit=0._
—snosoftlockup processor.max_cstate=1 intel_idle.max_cstate=1 hpet=disable tsc=reliable mce=off_
—console=tty@ console=ttySe@,115200n8

Linux uname

$ uname -a
Linux s3-t21-sutl 4.15.0-72-generic #81-Ubuntu SMP Tue Nov 26 12:20:02 UTC 2019 x86_64 x86_64 x86_
—64 GNU/Linux

System-level Core Jitter

$ sudo taskset -c 3 /home/testuser/pma_tools/jitter/jitter -i 20

Linux Jitter testing program version 1.8

Iterations=20

The pragram will execute a dummy function 80000 times

Display is updated every 20000 displayUpdate intervals

Timings are in CPU Core cycles

Inst_Min: Minimum Excution time during the display update interval(default is ~1 second)
Inst_Max: Maximum Excution time during the display update interval(default is ~1 second)
Inst_jitter: Jitter in the Excution time during rhe display update interval. This is the value of._
—interest

last_Exec: The Excution time of last iteration just before the display update
Abs_Min: Absolute Minimum Excution time since the program started or statistics were reset
Abs_Max: Absolute Maximum Excution time since the program started or statistics were reset
tmp: Cumulative value calcualted by the dummy function
Interval: Time interval between the display updates in Core Cycles
Sample No: Sample number
Inst_Min Inst_Max Inst_jitter last_Exec Abs_min Abs_max tmp Interval o
—Sample No
160022 171330 11308 160022 160022 171330 2538733568 3204142750 -
<~>’|
160022 167294 7272 160026 160022 171330 328335360 3203873548 -
2
160022 167560 7538 160026 160022 171330 2412904448 3203878736 .
3
160022 169000 8978 160024 160022 171330 202506240 3203864588 -
—4
160022 166572 6550 160026 160022 171330 2287075328 3203866224 -
-5
160022 167460 7438 160026 160022 171330 76677120 3203854632 .
—6
160022 168134 8112 160024 160022 171330 2161246208 3203874674 -
“ )7
160022 169094 9072 160022 160022 171330 4245815296 3203878798 -
-8
160022 172460 12438 160024 160022 172460 2035417088 3204112010 -
—9
160022 167862 7840 160030 160022 172460 4119986176 3203856800 -
10
160022 168398 8376 160024 160022 172460 1909587968 3203854192 -

=11

(continues on next page)

386 Chapter 3. DPDK Performance




CSIT REPORT, Release rls2001

(continued from previous page)

160022 167548 7526 160024 160022 172460 3994157056 3203847442 -
:>12160022 167562 7540 160026 160022 172460 1783758848 3203862936 -
(413160022 167604 7582 160024 160022 172460 3868327936 3203859346 -
‘H14160022 168262 8240 160024 160022 172460 1657929728 3203851120 -
(>15160022 169700 9678 160024 160022 172460 3742498816 3203877690 -
(%16160022 170476 10454 160026 160022 172460 1532100608 3204088480 .
:H17160022 167798 7776 160024 160022 172460 3616669696 3203862072 -
H18160022 166540 6518 160024 160022 172460 1406271488 3203836904 -
(%19160922 167516 7494 160024 160022 172460 3490840576 3203848120 .
<20

Memory Bandwidth

$ sudo /home/testuser/mlc --bandwidth_matrix
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --bandwidth_matrix

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes
Measuring Memory Bandwidths between nodes within system

Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)

Using all the threads from each core if Hyper-threading is enabled

Using Read-only traffic type

Numa node

Numa node 0 1
0 107947.7 50951.5
1 50834.6 108183.4

$ sudo /home/testuser/mlc --peak_injection_bandwidth
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --peak_injection_bandwidth

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes

Measuring Peak Injection Memory Bandwidths for the system
Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)

Using all the threads from each core if Hyper-threading is enabled
Using traffic with the following read-write ratios

ALL Reads : 215733.9

3:1 Reads-Writes : 182141.9

2:1 Reads-Writes : 178615.7

1:1 Reads-Writes : 149911.3

Stream-triad like: 159533.6

$ sudo /home/testuser/mlc --max_bandwidth
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --max_bandwidth

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes

Measuring Maximum Memory Bandwidths for the system

(continues on next page)

3.7. Test Environment 387




CSIT REPORT, Release rls2001

(continued from previous page)

Will take several minutes to complete as multiple injection rates will be tried to get the best.

—bandwidth

Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)

Using all the threads from each core if Hyper-threading is enabled
Using traffic with the following read-write ratios

ALL Reads ;. 216875.73

3:1 Reads-Writes : 182615.14

2:1 Reads-Writes : 178745.67

1:1 Reads-Writes : 149485.27

Stream-triad like: 180057.87

Memory Latency

$ sudo /home/testuser/mlc --latency_matrix
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --latency_matrix

Using buffer size of 2000.000MB
Measuring idle latencies (in ns)...

Numa node

Numa node 0 1
0 81.4 131.1
1 131.1 81.3

$ sudo /home/testuser/mlc --idle_latency
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --idle_latency

Using buffer size of 2000.000MB
Each iteration took 202.0 core clocks ( 80.8 ns)

$ sudo /home/testuser/mlc --loaded_latency
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --loaded_latency

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes

Measuring Loaded Latencies for the system

Using all the threads from each core if Hyper-threading is enabled
Using Read-only traffic type

Inject Latency Bandwidth

Delay (ns) MB/sec

00000 282.66  215712.
00002 282.14  215757.
00008 280.21 215868.
00015 279.20  216313.
00050 275.25  216643.
00100 227.05  215075.
00200 121.92  160242.
00300 101.21 111587.
00400  95.48 85019.
00500  94.46 68717.
00700  92.27 49742.
01000 91.03 35264.
01300 90.11 27396.
01700  89.34 21178.
02500 90.15 14672.

0N W OoONWNDOOSON—= I~

(continues on next page)

388

Chapter 3. DPDK Performance




CSIT REPORT, Release rls2001

(continued from previous page)

03500 89.00 10715.7
05000 82.00 7788.2
09000  81.46 4684.0
20000 81.40 2541.9

L1/L2/LLC Latency

$ sudo /home/testuser/mlc --c2c_latency
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --c2c_latency

Measuring cache-to-cache transfer latency (in ns)...

Local Socket L2->L2 HIT latency 53.7

Local Socket L2->L2 HITM latency 53.7

Remote Socket L2->L2 HITM latency (data address homed in writer socket)
Reader Numa Node

Writer Numa Node 0 1
Q - 113.9
1 113.9 -

Remote Socket L2->L2 HITM latency (data address homed in reader socket)
Reader Numa Node

Writer Numa Node %} 1
Q - 177.9
1 177.6 -

Spectre and Meltdown Checks

Following section displays the output of a running shell script to tell if system is vulnerable against the
several “speculative execution” CVEs that were made public in 2018. Script is available on Spectre &
Meltdown Checker Github®>1.

Spectre and Meltdown mitigation detection tool v@.43

awk: cannot open bash (No such file or directory)

Checking for vulnerabilities on current system

Kernel is Linux 4.15.0-72-generic #81-Ubuntu SMP Tue Nov 26 12:20:02 UTC 2019 x86_64
CPU is Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz

Hardware check
* Hardware support (CPU microcode) for mitigation techniques
* Indirect Branch Restricted Speculation (IBRS)
* SPEC_CTRL MSR is available: YES
* CPU indicates IBRS capability: YES (SPEC_CTRL feature bit)
* Indirect Branch Prediction Barrier (IBPB)
* PRED_CMD MSR is available: YES
* CPU indicates IBPB capability: YES (SPEC_CTRL feature bit)
* Single Thread Indirect Branch Predictors (STIBP)
* SPEC_CTRL MSR is available: YES
* CPU indicates STIBP capability: YES (Intel STIBP feature bit)
* Speculative Store Bypass Disable (SSBD)
* CPU indicates SSBD capability: YES (Intel SSBD)
* L1 data cache invalidation
* FLUSH_CMD MSR is available: YES
* CPU indicates L1D flush capability: YES (L1D flush feature bit)
* Microarchitectural Data Sampling
* VERW instruction is available: YES (MD_CLEAR feature bit)

(continues on next page)

151 https:/github.com/speed47/spectre-meltdown-checker

3.7. Test Environment 389



https://github.com/speed47/spectre-meltdown-checker
https://github.com/speed47/spectre-meltdown-checker

CSIT REPORT, Release rls2001

(continued from previous page)

* Enhanced IBRS (IBRS_ALL)

* CPU indicates ARCH_CAPABILITIES MSR availability: NO

* ARCH_CAPABILITIES MSR advertises IBRS_ALL capability: NO

CPU explicitly indicates not being vulnerable to Meltdown/L1TF (RDCL_NO): NO

CPU explicitly indicates not being vulnerable to Variant 4 (SSB_NO): NO

CPU/Hypervisor indicates L1D flushing is not necessary on this system: NO

Hypervisor indicates host CPU might be vulnerable to RSB underflow (RSBA): NO

CPU explicitly indicates not being vulnerable to Microarchitectural Data Sampling (MDS_NO): NO
CPU explicitly indicates not being vulnerable to TSX Asynchronous Abort (TAA_NO): NO

CPU explicitly indicates not being vulnerable to iTLB Multihit (PSCHANGE_MSC_NO): NO

CPU explicitly indicates having MSR for TSX control (TSX_CTRL_MSR): NO

CPU supports Transactional Synchronization Extensions (TSX): YES (RTM feature bit)

CPU supports Software Guard Extensions (SGX): NO

CPU microcode is known to cause stability problems: NO (model 0x55 family 0x6 stepping 0x4 ucode.
,0x2000064 cpuid 0x50654)

* CPU microcode is the latest known available version: awk: cannot open bash (No such file or_
—directory)

UNKNOWN (latest microcode version for your CPU model is unknown)

* CPU vulnerability to the speculative execution attack variants

Vulnerable to CVE-2017-5753 (Spectre Variant 1, bounds check bypass): YES

Vulnerable to CVE-2017-5715 (Spectre Variant 2, branch target injection): YES

Vulnerable to CVE-2017-5754 (Variant 3, Meltdown, rogue data cache load): YES

Vulnerable to CVE-2018-3640 (Variant 3a, rogue system register read): YES

Vulnerable to CVE-2018-3639 (Variant 4, speculative store bypass): YES

Vulnerable to CVE-2018-3615 (Foreshadow (SGX), L1 terminal fault): NO

Vulnerable to CVE-2018-3620 (Foreshadow-NG (0S), L1 terminal fault): YES

Vulnerable to CVE-2018-3646 (Foreshadow-NG (VMM), L1 terminal fault): YES

Vulnerable to CVE-2018-12126 (Fallout, microarchitectural store buffer data sampling (MSBDS)):.
—YES

* Vulnerable to CVE-2018-12130 (ZombielLoad, microarchitectural fill buffer data sampling (MFBDS)):.
—YES

* Vulnerable to CVE-2018-12127 (RIDL, microarchitectural load port data sampling (MLPDS)): YES

* Vulnerable to CVE-2019-11091 (RIDL, microarchitectural data sampling uncacheable memory..
—(MDSUM)): YES

* Vulnerable to CVE-2019-11135 (ZombielLoad V2, TSX Asynchronous Abort (TAA)): YES

* Vulnerable to CVE-2018-12207 (No eXcuses, iTLB Multihit, machine check exception on page size.
—changes (MCEPSC)): YES

X% % X % X % X %X X% X%

X% % %X % X % X %

CVE-2017-5753 aka Spectre Variant 1, bounds check bypass

* Mitigated according to the /sys interface: YES (Mitigation: usercopy/swapgs barriers and __user.
—pointer sanitization)

* Kernel has array_index_mask_nospec: YES (1 occurrence(s) found of x86 64 bits array_index_mask_
—nospec())

* Kernel has the Red Hat/Ubuntu patch: NO

* Kernel has mask_nospec64 (armé64): NO

> STATUS: NOT VULNERABLE (Mitigation: usercopy/swapgs barriers and __user pointer sanitization)

CVE-2017-5715 aka Spectre Variant 2, branch target injection
* Mitigated according to the /sys interface: YES (Mitigation: Full generic retpoline, IBPB:._
—conditional, IBRS_FW, STIBP: conditional, RSB filling)
* Mitigation 1
* Kernel is compiled with IBRS support: YES
* IBRS enabled and active: YES (for firmware code only)
* Kernel is compiled with IBPB support: YES
* IBPB enabled and active: YES
* Mitigation 2
* Kernel has branch predictor hardening (arm): NO
* Kernel compiled with retpoline option: YES
* Kernel compiled with a retpoline-aware compiler: YES (kernel reports full retpoline.
—compilation)
* Kernel supports RSB filling: YES

(continues on next page)

390 Chapter 3. DPDK Performance




CSIT REPORT, Release rls2001

(continued from previous page)

> STATUS: NOT VULNERABLE (Full retpoline + IBPB are mitigating the vulnerability)

CVE-2017-5754 aka Variant 3, Meltdown, rogue data cache load
* Mitigated according to the /sys interface: YES (Mitigation: PTI)
* Kernel supports Page Table Isolation (PTI): YES
* PTI enabled and active: YES
* Reduced performance impact of PTI: YES (CPU supports INVPCID, performance impact of PTI will be_
—greatly reduced)
* Running as a Xen PV DomU: NO
> STATUS: NOT VULNERABLE (Mitigation: PTI)

CVE-2018-3640 aka Variant 3a, rogue system register read
* CPU microcode mitigates the vulnerability: YES
> STATUS: NOT VULNERABLE (your CPU microcode mitigates the vulnerability)

CVE-2018-3639 aka Variant 4, speculative store bypass

* Mitigated according to the /sys interface: YES (Mitigation: Speculative Store Bypass disabled via.
—prctl and seccomp)

* Kernel supports disabling speculative store bypass (SSB): YES (found in /proc/self/status)

* SSB mitigation is enabled and active: YES (per-thread through prctl)

* SSB mitigation currently active for selected processes: YES (systemd-journald systemd-logind.
—ssystemd-networkd systemd-resolved systemd-timesyncd systemd-udevd)

> STATUS: NOT VULNERABLE (Mitigation: Speculative Store Bypass disabled via prctl and seccomp)

CVE-2018-3615 aka Foreshadow (SGX), L1 terminal fault
* CPU microcode mitigates the vulnerability: N/A
> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-3620 aka Foreshadow-NG (0S), L1 terminal fault

* Mitigated according to the /sys interface: YES (Mitigation: PTE Inversion; VMX: conditional cache._
—flushes, SMT vulnerable)

* Kernel supports PTE inversion: YES (found in kernel image)

* PTE inversion enabled and active: YES

> STATUS: NOT VULNERABLE (Mitigation: PTE Inversion; VMX: conditional cache flushes, SMT vulnerable)

CVE-2018-3646 aka Foreshadow-NG (VMM), L1 terminal fault
* Information from the /sys interface: Mitigation: PTE Inversion; VMX: conditional cache flushes,._.
—SMT vulnerable
* This system is a host running a hypervisor: NO
* Mitigation 1 (KVM)
* EPT is disabled: NO
* Mitigation 2
* L1D flush is supported by kernel: YES (found flush_11d in /proc/cpuinfo)
% L1D flush enabled: YES (conditional flushes)
* Hardware-backed L1D flush supported: YES (performance impact of the mitigation will be greatly.
—reduced)
* Hyper-Threading (SMT) is enabled: YES
> STATUS: NOT VULNERABLE (this system is not running a hypervisor)

CVE-2018-12126 aka Fallout, microarchitectural store buffer data sampling (MSBDS)

Mitigated according to the /sys interface: YES (Mitigation: Clear CPU buffers; SMT vulnerable)
* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)

* Kernel mitigation is enabled and active: YES

* SMT is either mitigated or disabled: NO

> STATUS: NOT VULNERABLE (Your microcode and kernel are both up to date for this mitigation, and_
—mitigation is enabled)

*

CVE-2018-12130 aka ZombielLoad, microarchitectural fill buffer data sampling (MFBDS)

* Mitigated according to the /sys interface: YES (Mitigation: Clear CPU buffers; SMT vulnerable)
* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)

* Kernel mitigation is enabled and active: YES

(continues on next page)

3.7. Test Environment 391




CSIT REPORT, Release rls2001

(continued from previous page)

* SMT is either mitigated or disabled: NO
> STATUS: NOT VULNERABLE (Your microcode and kernel are both up to date for this mitigation, and.
—mitigation is enabled)

CVE-2018-12127 aka RIDL, microarchitectural load port data sampling (MLPDS)

Mitigated according to the /sys interface: YES (Mitigation: Clear CPU buffers; SMT vulnerable)
* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)

* Kernel mitigation is enabled and active: YES

* SMT is either mitigated or disabled: NO

> STATUS: NOT VULNERABLE (Your microcode and kernel are both up to date for this mitigation, and.
—mitigation is enabled)

>*

CVE-2019-11091 aka RIDL, microarchitectural data sampling uncacheable memory (MDSUM)

* Mitigated according to the /sys interface: YES (Mitigation: Clear CPU buffers; SMT vulnerable)
* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)

* Kernel mitigation is enabled and active: YES

* SMT is either mitigated or disabled: NO

> STATUS: NOT VULNERABLE (Your microcode and kernel are both up to date for this mitigation, and.
—mitigation is enabled)

CVE-2019-11135 aka ZombielLoad V2, TSX Asynchronous Abort (TAA)

* Mitigated according to the /sys interface: YES (Mitigation: Clear CPU buffers; SMT vulnerable)
* TAA mitigation is supported by kernel: YES (found tsx_async_abort in kernel image)

* TAA mitigation enabled and active: YES (Mitigation: Clear CPU buffers; SMT vulnerable)

> STATUS: NOT VULNERABLE (Mitigation: Clear CPU buffers; SMT vulnerable)

CVE-2018-12207 aka No eXcuses, iTLB Multihit, machine check exception on page size changes (MCEPSC)
Mitigated according to the /sys interface: YES (KVM: Mitigation: Split huge pages)

This system is a host running a hypervisor: NO

iTLB Multihit mitigation is supported by kernel: YES (found itlb_multihit in kernel image)

iTLB Multihit mitigation enabled and active: YES (KVM: Mitigation: Split huge pages)

STATUS: NOT VULNERABLE (this system is not running a hypervisor)

*

Voo% %X %

> SUMMARY: CVE-2017-5753:0K CVE-2017-5715:0K CVE-2017-5754:0K CVE-2018-3640:0K CVE-2018-3639:0K CVE-
—2018-3615:0K CVE-2018-3620:0K CVE-2018-3646:0K CVE-2018-12126:0K CVE-2018-12130:0K CVE-2018-
—12127:0K CVE-2019-11091:0K CVE-2019-11135:0K CVE-2018-12207:0K

3.7.5 Calibration Data - Cascade Lake

Following sections include sample calibration data measured on s32-t27-sut1 server running in one of
the Intel Xeon Skylake testbeds as specified in FD.io CSIT testbeds - Xeon Cascade Lakel°2.

Calibration data obtained from all other servers in Cascade Lake testbeds shows the same or similar
values.

Linux cmdline

$ cat /proc/cmdline

BOOT_IMAGE=/boot/vmlinuz-4.15.0-72-generic root=UUID=1d@3969e-a2a0@-41b2-a97e-1cc171b07e88 ro._
—isolcpus=1-23,25-47,49-71,73-95 nohz_full=1-23,25-47,49-71,73-95 rcu_nocbs=1-23,25-47,49-71,73-95_
—numa_balancing=disable intel_pstate=disable intel_iommu=on iommu=pt nmi_watchdog=0 audit=0._
—nosoftlockup processor.max_cstate=1 intel_idle.max_cstate=1 hpet=disable tsc=reliable mce=off_
—console=tty@ console=ttyS0,115200n8

152 https://git.fd.io/csit/tree/docs/lab/testbeds_sm_clx_hw_bios_cfg.md?h=rls2001

392 Chapter 3. DPDK Performance



https://git.fd.io/csit/tree/docs/lab/testbeds_sm_clx_hw_bios_cfg.md?h=rls2001

CSIT REPORT, Release rls2001

Linux uname

$ uname -a
Linux s32-t27-sutl 4.15.0-72-generic #81-Ubuntu SMP Tue Nov 26 12:20:02 UTC 2019 x86_64 x86_64 x86_
—64 GNU/Linux

System-level Core Jitter

$ sudo taskset -c 3 /home/testuser/pma_tools/jitter/jitter -i 30

Linux Jitter testing program version 1.9

Iterations=30

The pragram will execute a dummy function 80000 times

Display is updated every 20000 displayUpdate intervals

Thread affinity will be set to core_id:7

Timings are in CPU Core cycles

Inst_Min: Minimum Excution time during the display update interval(default is ~1 second)
Inst_Max: Maximum Excution time during the display update interval(default is ~1 second)
Inst_jitter: Jitter in the Excution time during rhe display update interval. This is the value of._
—interest

last_Exec: The Excution time of last iteration just before the display update

Abs_Min: Absolute Minimum Excution time since the program started or statistics were reset
Abs_Max: Absolute Maximum Excution time since the program started or statistics were reset
tmp: Cumulative value calcualted by the dummy function

Interval: Time interval between the display updates in Core Cycles

Sample No: Sample number

Inst_Min,Inst_Max,Inst_jitter,last_Exec,Abs_min,Abs_max,tmp,Interval,Sample No
160022,167590,7568,160026,160022,167590,2057568256,3203711852,1
160022,170628,10606,160024,160022,170628,4079222784,3204010824,2
160022,169824,9802,160024,160022,170628,1805910016,3203812064, 3
160022,168832,8810,160030,160022,170628,3827564544,3203792594,4
160022,168248,8226,160026,160022,170628,1554251776,3203765920,5
160022,167834,7812,160028,160022,170628,3575906304,3203761114,6
160022,167442,7420,160024,160022,170628,1302593536,3203769250,7
160022,169120,9098,160028,160022,170628,3324248064,3203853340,8
160022,170710,10688,160024,160022,170710,1050935296,3203985878,9
160022,167952,7930,160024,160022,170710,3072589824,3203733756,10
160022,168314,8292,160030,160022,170710,799277056,3203741152,11
160022,169672,9650,160024,160022,170710,2820931584,3203739910,12
160022,168684,8662,160024,160022,170710,547618816,3203727336,13
160022,168246,8224,160024,160022,170710,2569273344,3203739052,14
160022,168134,8112,160030,160022,170710,295960576,3203735874,15
160022,170230,10208,160024,160022,170710,2317615104,3203996356,16
160022,167190,7168,160024,160022,170710,44302336,3203713628,17
160022,167304,7282,160024,160022,170710,2065956864,3203717954,18
160022,167500,7478,160024,160022,170710,4087611392,3203706674,19
160022,167302,7280,160024,160022,170710,1814298624,3203726452,20
160022,167266,7244,160024,160022,170710,3835953152,3203702804,21
160022,167820,7798,160022,160022,170710,1562640384,3203719138,22
160022,168100,8078,160024,160022,170710,3584294912, 3203716636, 23
160022,170408,10386,160024,160022,170710,1310982144,3203946958, 24
160022,167276,7254,160024,160022,170710,3332636672,3203706236, 25
160022,167052,7030,160024,160022,170710,1059323904, 3203696444 , 26
160022,170322,10300,160024,160022,170710,3080978432,3203747514,27
160022,167332,7310,160024,160022,170710,807665664,3203716210,28
160022,167426,7404,160026,160022,170710,2829320192,3203700630, 29
160022,168840,8818,160024,160022,170710,556007424,3203727658,30

3.7. Test Environment 393



CSIT REPORT, Release rls2001

Memory Bandwidth

$ sudo /home/testuser/mlc --bandwidth_matrix
Intel(R) Memory Latency Checker - v3.7
Command line parameters: --bandwidth_matrix

Using buffer size of 100.000MiB/thread for reads and an additional 100.000MiB/thread for writes
Measuring Memory Bandwidths between nodes within system

Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)

Using all the threads from each core if Hyper-threading is enabled

Using Read-only traffic type

Numa node
Numa node 0 1
0 122097.7 51327.9
1 51309.2 122005.5

$ sudo /home/testuser/mlc --peak_injection_bandwidth
Intel(R) Memory Latency Checker - v3.7
Command line parameters: --peak_injection_bandwidth

Using buffer size of 100.000MiB/thread for reads and an additional 100.000MiB/thread for writes

Measuring Peak Injection Memory Bandwidths for the system
Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)

Using all the threads from each core if Hyper-threading is enabled
Using traffic with the following read-write ratios

ALL Reads : 243159.4
3:1 Reads-Writes : 219132.5
2:1 Reads-Writes : 216603.1
1:1 Reads-Writes : 203713.0
Stream-triad like: 193790.8

$ sudo /home/testuser/mlc --max_bandwidth
Intel(R) Memory Latency Checker - v3.7
Command line parameters: --max_bandwidth

Using buffer size of 100.000MiB/thread for reads and an additional 100.000MiB/thread for writes

Measuring Maximum Memory Bandwidths for the system

Will take several minutes to complete as multiple injection rates will be tried to get the best._
—bandwidth

Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)

Using all the threads from each core if Hyper-threading is enabled

Using traffic with the following read-write ratios

ALL Reads : 244114 .27
3:1 Reads-Writes : 219441.97
2:1 Reads-Writes : 216603.72
1:1 Reads-Writes : 203679.09
Stream-triad like: 214902.80

Memory Latency

$ sudo /home/testuser/mlc --latency_matrix
Intel(R) Memory Latency Checker - v3.7
Command line parameters: --latency_matrix

Using buffer size of 2000.000MiB
Measuring idle latencies (in ns)...
Numa node

(continues on next page)

394 Chapter 3. DPDK Performance




CSIT REPORT, Release rls2001

(continued from previous page)

Numa node 0 1
0 81.2 130.2
1 130.2 81.1

$ sudo /home/testuser/mlc --idle_latency
Intel(R) Memory Latency Checker - v3.7
Command line parameters: --idle_latency

Using buffer size of 2000.000MiB
Each iteration took 186.1 core clocks ( 80.9 ns)

$ sudo /home/testuser/mlc --loaded_latency
Intel(R) Memory Latency Checker - v3.7
Command line parameters: --loaded_latency

Using buffer size of 100.000MiB/thread for reads and an additional 100.000MiB/thread for writes

Measuring Loaded Latencies for the system

Using all the threads from each core if Hyper-threading is enabled
Using Read-only traffic type

Inject Latency Bandwidth

Delay (ns) MB/sec

00000 233.86  243421.
00002 230.61 243544.
00008 232.56  243394.
00015 229.52  244076.
00050 225.82  244290.
00100 161.65 236744.
00200 100.63  133844.
00300 96.84 90548.
00400  95.71 68504.
00500  95.68 55139.
00700  88.77 39798.
01000 84.74 28200.
01300 83.08 21915.
01700  82.27 16969.
02500 81.66 11810.
03500  81.98 8662.
05000  81.48 6306.
09000 81.17 3857.
20000 80.19 2179.

O 00 WO WUl — AhO WNOS WO O U1 = O

L1/L2/LLC Latency

$ sudo /home/testuser/mlc --c2c_latency
Intel(R) Memory Latency Checker - v3.7
Command line parameters: --c2c_latency

Measuring cache-to-cache transfer latency (in ns)...

Local Socket L2->L2 HIT latency 55.5

Local Socket L2->L2 HITM latency 55.6

Remote Socket L2->L2 HITM latency (data address homed in writer socket)
Reader Numa Node

Writer Numa Node 0 1
Q - 115.6
1 115.6 -

Remote Socket L2->L2 HITM latency (data address homed in reader socket)

(continues on next page)

3.7. Test Environment 395




CSIT REPORT, Release rls2001

(continued from previous page)

Reader Numa Node

Writer Numa Node 0 1
Q - 178.2
1 178.4 -

Spectre and Meltdown Checks

Following section displays the output of a running shell script to tell if system is vulnerable against the
several speculative execution CVEs that were made public in 2018. Script is available on Spectre & Melt-
down Checker Github®3,

Spectre and Meltdown mitigation detection tool v@.43

awk: fatal: cannot open file ‘bash for reading (No such file or directory)

Checking for vulnerabilities on current system

Kernel is Linux 4.15.0-72-generic #81-Ubuntu SMP Tue Nov 26 12:20:02 UTC 2019 x86_64
CPU is Intel(R) Xeon(R) Platinum 8280 CPU @ 2.70GHz

Hardware check
* Hardware support (CPU microcode) for mitigation techniques
* Indirect Branch Restricted Speculation (IBRS)
* SPEC_CTRL MSR is available: YES
* CPU indicates IBRS capability: YES (SPEC_CTRL feature bit)
* Indirect Branch Prediction Barrier (IBPB)
* PRED_CMD MSR is available: YES
* CPU indicates IBPB capability: YES (SPEC_CTRL feature bit)
* Single Thread Indirect Branch Predictors (STIBP)
* SPEC_CTRL MSR is available: YES
* CPU indicates STIBP capability: YES (Intel STIBP feature bit)
* Speculative Store Bypass Disable (SSBD)
* CPU indicates SSBD capability: YES (Intel SSBD)
* L1 data cache invalidation
* FLUSH_CMD MSR is available: YES
* CPU indicates L1D flush capability: YES (L1D flush feature bit)
* Microarchitectural Data Sampling
* VERW instruction is available: YES (MD_CLEAR feature bit)
* Enhanced IBRS (IBRS_ALL)
* CPU indicates ARCH_CAPABILITIES MSR availability: YES
* ARCH_CAPABILITIES MSR advertises IBRS_ALL capability: YES
CPU explicitly indicates not being vulnerable to Meltdown/L1TF (RDCL_NO): YES
CPU explicitly indicates not being vulnerable to Variant 4 (SSB_NO): NO
CPU/Hypervisor indicates L1D flushing is not necessary on this system: YES
Hypervisor indicates host CPU might be vulnerable to RSB underflow (RSBA): NO
CPU explicitly indicates not being vulnerable to Microarchitectural Data Sampling (MDS_NO): YES
CPU explicitly indicates not being vulnerable to TSX Asynchronous Abort (TAA_NO): NO
CPU explicitly indicates not being vulnerable to iTLB Multihit (PSCHANGE_MSC_NO): NO
CPU explicitly indicates having MSR for TSX control (TSX_CTRL_MSR): YES
* TSX_CTRL MSR indicates TSX RTM is disabled: YES
* TSX_CTRL MSR indicates TSX CPUID bit is cleared: YES
* CPU supports Transactional Synchronization Extensions (TSX): NO
* CPU supports Software Guard Extensions (SGX): NO
* CPU microcode is known to cause stability problems: NO (model 0x55 family @x6 stepping 0x7.
—ucode 0x500002c cpuid 0x50657)
* CPU microcode is the latest known available version: awk: fatal: cannot open file ‘bash for._
—reading (No such file or directory)
UNKNOWN (latest microcode version for your CPU model is unknown)
* CPU vulnerability to the speculative execution attack variants
* Vulnerable to CVE-2017-5753 (Spectre Variant 1, bounds check bypass): YES

X % % X %X %X %X %

(continues on next page)

153 https:/github.com/speed47/spectre-meltdown-checker

396 Chapter 3. DPDK Performance



https://github.com/speed47/spectre-meltdown-checker
https://github.com/speed47/spectre-meltdown-checker

CSIT REPORT, Release rls2001

(continued from previous page)

Vulnerable to CVE-2017-5715 (Spectre Variant 2, branch target injection): YES

Vulnerable to CVE-2017-5754 (Variant 3, Meltdown, rogue data cache load): NO

Vulnerable to CVE-2018-3640 (Variant 3a, rogue system register read): YES

Vulnerable to CVE-2018-3639 (Variant 4, speculative store bypass): YES

Vulnerable to CVE-2018-3615 (Foreshadow (SGX), L1 terminal fault): NO

Vulnerable to CVE-2018-3620 (Foreshadow-NG (0S), L1 terminal fault): YES

Vulnerable to CVE-2018-3646 (Foreshadow-NG (VMM), L1 terminal fault): YES

Vulnerable to CVE-2018-12126 (Fallout, microarchitectural store buffer data sampling (MSBDS)):.

¥ % %X %X %k X % %k

—NO
* Vulnerable to CVE-2018-12130 (ZombielLoad, microarchitectural fill buffer data sampling.
< (MFBDS)): NO
* Vulnerable to CVE-2018-12127 (RIDL, microarchitectural load port data sampling (MLPDS)): NO
* Vulnerable to CVE-2019-11091 (RIDL, microarchitectural data sampling uncacheable memory..
— (MDSUM)): NO
* Vulnerable to CVE-2019-11135 (ZombieLoad V2, TSX Asynchronous Abort (TAA)): NO
* Vulnerable to CVE-2018-12207 (No eXcuses, iTLB Multihit, machine check exception on page size.
—changes (MCEPSC)): YES

CVE-2017-5753 aka Spectre Variant 1, bounds check bypass

* Mitigated according to the /sys interface: YES (Mitigation: usercopy/swapgs barriers and __user.
—pointer sanitization)

* Kernel has array_index_mask_nospec: YES (1 occurrence(s) found of x86 64 bits array_index_mask_
—nospec())

* Kernel has the Red Hat/Ubuntu patch: NO

* Kernel has mask_nospec64 (arm64): NO

> STATUS: NOT VULNERABLE (Mitigation: usercopy/swapgs barriers and __user pointer sanitization)

CVE-2017-5715 aka Spectre Variant 2, branch target injection
* Mitigated according to the /sys interface: YES (Mitigation: Enhanced IBRS, IBPB: conditional, RSB.
—filling)
* Mitigation 1
* Kernel is compiled with IBRS support: YES
* IBRS enabled and active: YES (Enhanced flavor, performance impact will be greatly reduced)
* Kernel is compiled with IBPB support: YES
* IBPB enabled and active: YES
* Mitigation 2
* Kernel has branch predictor hardening (arm): NO
* Kernel compiled with retpoline option: YES
* Kernel supports RSB filling: YES
> STATUS: NOT VULNERABLE (Enhanced IBRS + IBPB are mitigating the vulnerability)

CVE-2017-5754 aka Variant 3, Meltdown, rogue data cache load
* Mitigated according to the /sys interface: YES (Not affected)
* Kernel supports Page Table Isolation (PTI): YES
* PTI enabled and active: UNKNOWN (dmesg truncated, please reboot and relaunch this script)
* Reduced performance impact of PTI: YES (CPU supports INVPCID, performance impact of PTI will be.
—greatly reduced)
* Running as a Xen PV DomU: NO
> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-3640 aka Variant 3a, rogue system register read
* CPU microcode mitigates the vulnerability: YES
> STATUS: NOT VULNERABLE (your CPU microcode mitigates the vulnerability)

CVE-2018-3639 aka Variant 4, speculative store bypass

* Mitigated according to the /sys interface: YES (Mitigation: Speculative Store Bypass disabled via.
—prctl and seccomp)

* Kernel supports disabling speculative store bypass (SSB): YES (found in /proc/self/status)

* SSB mitigation is enabled and active: YES (per-thread through prctl)

* SSB mitigation currently active for selected processes: YES (systemd-journald systemd-logind.
—systemd-networkd systemd-resolved systemd-timesyncd systemd-udevd)

(continues on next page)

3.7. Test Environment 397




CSIT REPORT, Release rls2001

(continued from previous page)

> STATUS: NOT VULNERABLE (Mitigation: Speculative Store Bypass disabled via prctl and seccomp)

CVE-2018-3615 aka Foreshadow (SGX), L1 terminal fault
* CPU microcode mitigates the vulnerability: N/A
> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-3620 aka Foreshadow-NG (0S), L1 terminal fault
Mitigated according to the /sys interface: YES (Not affected)
* Kernel supports PTE inversion: YES (found in kernel image)

* PTE inversion enabled and active: NO

> STATUS: NOT VULNERABLE (Not affected)

*

CVE-2018-3646 aka Foreshadow-NG (VMM), L1 terminal fault
* Information from the /sys interface: Not affected
* This system is a host running a hypervisor: NO
* Mitigation 1 (KVM)
* EPT is disabled: NO
* Mitigation 2
* L1D flush is supported by kernel: YES (found flush_l1d in /proc/cpuinfo)
* L1D flush enabled: NO
* Hardware-backed L1D flush supported: YES (performance impact of the mitigation will be greatly.
—reduced)
* Hyper-Threading (SMT) is enabled: YES
> STATUS: NOT VULNERABLE (your kernel reported your CPU model as not vulnerable)

CVE-2018-12126 aka Fallout, microarchitectural store buffer data sampling (MSBDS)
Mitigated according to the /sys interface: YES (Not affected)

Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)
Kernel mitigation is enabled and active: NO

SMT is either mitigated or disabled: NO

STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

*

AV

CVE-2018-12130 aka ZombielLoad, microarchitectural fill buffer data sampling (MFBDS)
* Mitigated according to the /sys interface: YES (Not affected)

* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)

* Kernel mitigation is enabled and active: NO

* SMT is either mitigated or disabled: NO

> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-12127 aka RIDL, microarchitectural load port data sampling (MLPDS)

* Mitigated according to the /sys interface: YES (Not affected)

* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)

* Kernel mitigation is enabled and active: NO

* SMT is either mitigated or disabled: NO

> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2019-11091 aka RIDL, microarchitectural data sampling uncacheable memory (MDSUM)
* Mitigated according to the /sys interface: YES (Not affected)

* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)

* Kernel mitigation is enabled and active: NO

* SMT is either mitigated or disabled: NO

> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2019-11135 aka ZombielLoad V2, TSX Asynchronous Abort (TAA)

* Mitigated according to the /sys interface: YES (Mitigation: TSX disabled)

* TAA mitigation is supported by kernel: YES (found tsx_async_abort in kernel image)
* TAA mitigation enabled and active: YES (Mitigation: TSX disabled)

> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-12207 aka No eXcuses, iTLB Multihit, machine check exception on page size changes (MCEPSC)
* Mitigated according to the /sys interface: YES (KVM: Mitigation: Split huge pages)

(continues on next page)

398 Chapter 3. DPDK Performance




CSIT REPORT, Release rls2001

(continued from previous page)

This system is a host running a hypervisor: NO

iTLB Multihit mitigation is supported by kernel: YES (found itlb_multihit in kernel image)
iTLB Multihit mitigation enabled and active: YES (KVM: Mitigation: Split huge pages)
STATUS: NOT VULNERABLE (this system is not running a hypervisor)

AV S

SUMMARY: CVE-2017-5753:0K CVE-2017-5715:0K CVE-2017-5754:0K CVE-2018-3640:0K CVE-2018-3639:0K CVE-
~2018-3615:0K CVE-2018-3620:0K CVE-2018-3646:0K CVE-2018-12126:0K CVE-2018-12130:0K CVE-2018-
—12127:0K CVE-2019-11091:0K CVE-2019-11135:0K CVE-2018-12207:0K

A\

3.7.6 Calibration Data - Haswell

Following sections include sample calibration data measured on t1-sutl server running in one of the Intel
Xeon Haswell testbeds as specified in FD.io CSIT Testbeds - Xeon Haswell1%4.

Calibration data obtained from all other servers in Haswell testbeds shows the same or similar values.

Linux cmdline

$ cat /proc/cmdline

BOOT_IMAGE=/vmlinuz-4.15.0-72-generic root=UUID=c59ae603-8076-41f4-bb5d-bc3fc8dd3eal ro isolcpus=1-
—17,19-35 nohz_full=1-17,19-35 rcu_nocbs=1-17,19-35 numa_balancing=disable intel_pstate=disable_
—intel_iommu=on iommu=pt nmi_watchdog=0 audit=0 nosoftlockup processor.max_cstate=1 intel_idle.max_
—cstate=1 hpet=disable tsc=reliable mce=off console=tty@console=ttyS@,115200n8

Linux uname

$ uname -a
Linux t1-tgl 4.15.0-72-generic #81-Ubuntu SMP Tue Nov 26 12:20:02 UTC 2019 x86_64 x86_64 x86_64 GNU/
—Linux

System-level Core Jitter

$ sudo taskset -c 3 /home/testuser/pma_tools/jitter/jitter -i 30

Linux Jitter testing program version 1.8

Iterations=30

The pragram will execute a dummy function 80000 times

Display is updated every 20000 displayUpdate intervals

Timings are in CPU Core cycles

Inst_Min: Minimum Excution time during the display update interval(default is ~1 second)
Inst_Max: Maximum Excution time during the display update interval(default is ~1 second)
Inst_jitter: Jitter in the Excution time during rhe display update interval. This is the value of._
—interest

last_Exec: The Excution time of last iteration just before the display update
Abs_Min: Absolute Minimum Excution time since the program started or statistics were reset
Abs_Max: Absolute Maximum Excution time since the program started or statistics were reset
tmp: Cumulative value calcualted by the dummy function
Interval: Time interval between the display updates in Core Cycles
Sample No: Sample number

Inst_Min Inst_Max Inst_jitter last_Exec Abs_min Abs_max tmp Interval o
—Sample No

160024 172636 12612 160028 160024 172636 1573060608 3205463144 -
1

(continues on next page)

154 https://git.fd.io/csit/tree/docs/lab/testbeds_ucs_hsw_hw_bios_cfg.md?h=rls2001

3.7. Test Environment 399



https://git.fd.io/csit/tree/docs/lab/testbeds_ucs_hsw_hw_bios_cfg.md?h=rls2001

CSIT REPORT, Release rls2001

(continued from previous page)

160024 188236 28212 160028 160024 188236 958595072 3205500844 -
- 160024 185676 25652 160028 160024 188236 344129536 3205485976 o
- 160024 172608 12584 160024 160024 188236 4024631296 3205472740 _
- 160024 179260 19236 160028 160024 188236 3410165760 3205502164 -
- 160024 172432 12408 160024 160024 188236 2795700224 3205452036 o
o 160024 178820 18796 160024 160024 188236 2181234688 3205455408 -
- 160024 172512 12488 160028 160024 188236 1566769152 3205461528 =
e 160024 172636 12612 160028 160024 188236 952303616 3205478820 o
- 160024 173676 13652 160028 160024 188236 337838080 3205470412 .
Hm160024 178776 18752 160028 160024 188236 4018339840 3205481472 -
HH160024 172788 12764 160028 160024 188236 3403874304 3205492336 -
(%12160924 174616 14592 160028 160024 188236 2789408768 3205474904 u
H13160024 174440 14416 160028 160024 188236 2174943232 3205479448 -
H14160024 178748 18724 160024 160024 188236 1560477696 3205482668 -
(%15160924 172588 12564 169404 160024 188236 946012160 3205510496 .
H16160024 172636 12612 160024 160024 188236 331546624 3205472204 -
917160024 172480 12456 160024 160024 188236 4012048384 3205455864 -
(%18160924 172740 12716 160028 160024 188236 3397582848 3205464932 .
H19160024 179200 19176 160028 160024 188236 2783117312 3205476012 -
H20160024 172480 12456 160028 160024 188236 2168651776 3205465632 -
( >21160@24 172728 12704 160024 160024 188236 1554186240 3205497204 .
H22160024 172620 12596 160028 160024 188236 939720704 3205466972 -
<H23160@24 172640 12616 160028 160024 188236 325255168 3205471216 -
( >24160@24 172484 12460 160028 160024 188236 4005756928 3205467388 .
{H25160024 172636 12612 160028 160024 188236 3391291392 3205482748 -
<ﬁ26160@24 179056 19032 160024 160024 188236 2776825856 3205467152 -
( >27160@24 172672 12648 160024 160024 188236 2162360320 3205483268 -
(H28160024 176932 16908 160024 160024 188236 1547894784 3205488536 -
!ﬁ29160@24 172452 12428 160028 160024 188236 933429248 3205440636 -
—30

400 Chapter 3. DPDK Performance




CSIT REPORT, Release rls2001

Memory Bandwidth

$ sudo /home/testuser/mlc --bandwidth_matrix
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --bandwidth_matrix

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes
Measuring Memory Bandwidths between nodes within system

Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)

Using all the threads from each core if Hyper-threading is enabled

Using Read-only traffic type

Numa node

Numa node 0 1
] 57935.5 30265.2
1 30284.6  58409.9

$ sudo /home/testuser/mlc --peak_injection_bandwidth
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --peak_injection_bandwidth

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes

Measuring Peak Injection Memory Bandwidths for the system
Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)

Using all the threads from each core if Hyper-threading is enabled
Using traffic with the following read-write ratios

ALL Reads : 115762.2

3:1 Reads-Writes : 106242.2

2:1 Reads-Writes : 103031.8

1:1 Reads-Writes : 87943.7

Stream-triad like: 100048.4

$ sudo /home/testuser/mlc --max_bandwidth
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --max_bandwidth

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes

Measuring Maximum Memory Bandwidths for the system

Will take several minutes to complete as multiple injection rates will be tried to get the best._
—bandwidth

Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)

Using all the threads from each core if Hyper-threading is enabled
Using traffic with the following read-write ratios

ALL Reads : 115782.41

3:1 Reads-Writes : 105965.78

2:1 Reads-Writes : 103162.38

1:1 Reads-Writes : 88255.82

Stream-triad like: 105608.10

Memory Latency

$ sudo /home/testuser/mlc --latency_matrix
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --latency_matrix

Using buffer size of 200.000MB
Measuring idle latencies (in ns)...
Numa node

(continues on next page)

3.7. Test Environment 401




CSIT REPORT, Release rls2001

(continued from previous page)

Numa node 0 1
0 101.0 132.0
1 141.2 98.8

$ sudo /home/testuser/mlc --idle_latency
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --idle_latency

Using buffer size of 200.000MB
Each iteration took 227.2 core clocks ( 99.0 ns)

$ sudo /home/testuser/mlc --loaded_latency
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --loaded_latency

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes

Measuring Loaded Latencies for the system

Using all the threads from each core if Hyper-threading is enabled
Using Read-only traffic type

Inject Latency Bandwidth

Delay (ns) MB/sec

00000 294.08 115841.6
00002 294.27 115851.5
00008 293.67 115821.8
00015 278.92  115587.5
00050 246.80  113991.2
00100 206.86  104508.1
00200 123.72 72873.6
00300 113.35 52641.1
00400 108.89 41078.9
00500 108.11 33699.1
00700 106.19 24878.0
01000 104.75 17948.1
01300 103.72 14089.0
01700 102.95 11013.6
02500 102.25 7756.3
03500 101.81 5749.3
05000 101.46 4230.4
09000 101.05 2641.4
20000 100.77 1542.5

L1/L2/LLC Latency

$ sudo /home/testuser/mlc --c2c_latency
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --c2c_latency

Measuring cache-to-cache transfer latency (in ns)...

Local Socket L2->L2 HIT latency 42.1

Local Socket L2->L2 HITM latency 47.0

Remote Socket L2->L2 HITM latency (data address homed in writer socket)
Reader Numa Node

Writer Numa Node 0 1
0 - 108.0
1 106.9 -

Remote Socket L2->L2 HITM latency (data address homed in reader socket)

(continues on next page)

402 Chapter 3. DPDK Performance




CSIT REPORT, Release rls2001

(continued from previous page)

Reader Numa Node

Writer Numa Node 0 1
Q - 107.7
1 106.6 -

Spectre and Meltdown Checks

Following section displays the output of a running shell script to tell if system is vulnerable against the
several “speculative execution” CVEs that were made public in 2018. Script is available on Spectre &
Meltdown Checker Github®>>.

Spectre and Meltdown mitigation detection tool v@.43

awk: cannot open bash (No such file or directory)

Checking for vulnerabilities on current system

Kernel is Linux 4.15.0-72-generic #81-Ubuntu SMP Tue Nov 26 12:20:02 UTC 2019 x86_64
CPU is Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz

Hardware check
* Hardware support (CPU microcode) for mitigation techniques
* Indirect Branch Restricted Speculation (IBRS)
* SPEC_CTRL MSR is available: YES
* CPU indicates IBRS capability: YES (SPEC_CTRL feature bit)
* Indirect Branch Prediction Barrier (IBPB)
* PRED_CMD MSR is available: YES
* CPU indicates IBPB capability: YES (SPEC_CTRL feature bit)
* Single Thread Indirect Branch Predictors (STIBP)
* SPEC_CTRL MSR is available: YES
* CPU indicates STIBP capability: YES (Intel STIBP feature bit)
* Speculative Store Bypass Disable (SSBD)
* CPU indicates SSBD capability: YES (Intel SSBD)
* L1 data cache invalidation
* FLUSH_CMD MSR is available: YES
* CPU indicates L1D flush capability: YES (L1D flush feature bit)
* Microarchitectural Data Sampling
* VERW instruction is available: YES (MD_CLEAR feature bit)
* Enhanced IBRS (IBRS_ALL)
* CPU indicates ARCH_CAPABILITIES MSR availability: NO
* ARCH_CAPABILITIES MSR advertises IBRS_ALL capability: NO
CPU explicitly indicates not being vulnerable to Meltdown/L1TF (RDCL_NO): NO
CPU explicitly indicates not being vulnerable to Variant 4 (SSB_NO): NO
CPU/Hypervisor indicates L1D flushing is not necessary on this system: NO
Hypervisor indicates host CPU might be vulnerable to RSB underflow (RSBA): NO
CPU explicitly indicates not being vulnerable to Microarchitectural Data Sampling (MDS_NO): NO
CPU explicitly indicates not being vulnerable to TSX Asynchronous Abort (TAA_NO): NO
CPU explicitly indicates not being vulnerable to iTLB Multihit (PSCHANGE_MSC_NO): NO
CPU explicitly indicates having MSR for TSX control (TSX_CTRL_MSR): NO
CPU supports Transactional Synchronization Extensions (TSX): NO
CPU supports Software Guard Extensions (SGX): NO
* CPU microcode is known to cause stability problems: NO (model 0x3f family 0x6 stepping 0x2.
—ucode 0x43 cpuid 0x306f2)
* CPU microcode is the latest known available version: awk: cannot open bash (No such file or._
—directory)
UNKNOWN (latest microcode version for your CPU model is unknown)
* CPU vulnerability to the speculative execution attack variants
* Vulnerable to CVE-2017-5753 (Spectre Variant 1, bounds check bypass): YES
* Vulnerable to CVE-2017-5715 (Spectre Variant 2, branch target injection): YES
* Vulnerable to CVE-2017-5754 (Variant 3, Meltdown, rogue data cache load): YES

b R . T

(continues on next page)

155 https:/github.com/speed47/spectre-meltdown-checker

3.7. Test Environment 403



https://github.com/speed47/spectre-meltdown-checker
https://github.com/speed47/spectre-meltdown-checker

CSIT REPORT, Release rls2001

(continued from previous page)

Vulnerable to CVE-2018-3640 (Variant 3a, rogue system register read): YES
Vulnerable to CVE-2018-3639 (Variant 4, speculative store bypass): YES
Vulnerable to CVE-2018-3615 (Foreshadow (SGX), L1 terminal fault): NO
Vulnerable to CVE-2018-3620 (Foreshadow-NG (0S), L1 terminal fault): YES
Vulnerable to CVE-2018-3646 (Foreshadow-NG (VMM), L1 terminal fault): YES

* Vulnerable to CVE-2018-12126 (Fallout, microarchitectural store buffer data sampling (MSBDS)):.
—YES

* Vulnerable to CVE-2018-12130 (ZombielLoad, microarchitectural fill buffer data sampling.
—(MFBDS)): YES

* Vulnerable to CVE-2018-12127 (RIDL, microarchitectural load port data sampling (MLPDS)): YES

* Vulnerable to CVE-2019-11091 (RIDL, microarchitectural data sampling uncacheable memory.
— (MDSUM)): YES

* Vulnerable to CVE-2019-11135 (ZombielLoad V2, TSX Asynchronous Abort (TAA)): NO

* Vulnerable to CVE-2018-12207 (No eXcuses, iTLB Multihit, machine check exception on page size.
—changes (MCEPSC)): YES

* % %X %X %

CVE-2017-5753 aka Spectre Variant 1, bounds check bypass

* Mitigated according to the /sys interface: YES (Mitigation: usercopy/swapgs barriers and __user_
—pointer sanitization)

* Kernel has array_index_mask_nospec: YES (1 occurrence(s) found of x86 64 bits array_index_mask_
—nospec())

* Kernel has the Red Hat/Ubuntu patch: NO

* Kernel has mask_nospec64 (arm64): NO

> STATUS: NOT VULNERABLE (Mitigation: usercopy/swapgs barriers and __user pointer sanitization)

CVE-2017-5715 aka Spectre Variant 2, branch target injection
* Mitigated according to the /sys interface: YES (Mitigation: Full generic retpoline, IBPB:_
—conditional, IBRS_FW, RSB filling)
* Mitigation 1
* Kernel is compiled with IBRS support: YES
* IBRS enabled and active: YES (for firmware code only)
* Kernel is compiled with IBPB support: YES
* IBPB enabled and active: YES
* Mitigation 2
* Kernel has branch predictor hardening (arm): NO
* Kernel compiled with retpoline option: YES
* Kernel compiled with a retpoline-aware compiler: YES (kernel reports full retpoline_
—compilation)
> STATUS: NOT VULNERABLE (Full retpoline + IBPB are mitigating the vulnerability)

CVE-2017-5754 aka Variant 3, Meltdown, rogue data cache load
* Mitigated according to the /sys interface: YES (Mitigation: PTI)
* Kernel supports Page Table Isolation (PTI): YES
* PTI enabled and active: YES
* Reduced performance impact of PTI: YES (CPU supports INVPCID, performance impact of PTI will be.
—greatly reduced)
* Running as a Xen PV DomU: NO
> STATUS: NOT VULNERABLE (Mitigation: PTI)

CVE-2018-3640 aka Variant 3a, rogue system register read
* CPU microcode mitigates the vulnerability: YES
> STATUS: NOT VULNERABLE (your CPU microcode mitigates the vulnerability)

CVE-2018-3639 aka Variant 4, speculative store bypass

* Mitigated according to the /sys interface: YES (Mitigation: Speculative Store Bypass disabled via.
—prctl and seccomp)

* Kernel supports disabling speculative store bypass (SSB): YES (found in /proc/self/status)

* SSB mitigation is enabled and active: YES (per-thread through prctl)

* SSB mitigation currently active for selected processes: YES (systemd-journald systemd-logind.
—systemd-networkd systemd-resolved systemd-timesyncd systemd-udevd)

> STATUS: NOT VULNERABLE (Mitigation: Speculative Store Bypass disabled via prctl and seccomp)

(continues on next page)

404 Chapter 3. DPDK Performance




CSIT REPORT, Release rls2001

(continued from previous page)

CVE-2018-3615 aka Foreshadow (SGX), L1 terminal fault
* CPU microcode mitigates the vulnerability: N/A
> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-3620 aka Foreshadow-NG (0S), L1 terminal fault

* Mitigated according to the /sys interface: YES (Mitigation: PTE Inversion; VMX: conditional cache.
—flushes, SMT disabled)

* Kernel supports PTE inversion: YES (found in kernel image)

* PTE inversion enabled and active: YES

> STATUS: NOT VULNERABLE (Mitigation: PTE Inversion; VMX: conditional cache flushes, SMT disabled)

CVE-2018-3646 aka Foreshadow-NG (VMM), L1 terminal fault
* Information from the /sys interface: Mitigation: PTE Inversion; VMX: conditional cache flushes,.
—SMT disabled
* This system is a host running a hypervisor: NO
* Mitigation 1 (KVM)
* EPT is disabled: NO
* Mitigation 2
% L1D flush is supported by kernel: YES (found flush_l1d in /proc/cpuinfo)
* L1D flush enabled: YES (conditional flushes)
* Hardware-backed L1D flush supported: YES (performance impact of the mitigation will be greatly.
—reduced)
* Hyper-Threading (SMT) is enabled: NO
> STATUS: NOT VULNERABLE (this system is not running a hypervisor)

CVE-2018-12126 aka Fallout, microarchitectural store buffer data sampling (MSBDS)

Mitigated according to the /sys interface: YES (Mitigation: Clear CPU buffers; SMT disabled)

* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)

* Kernel mitigation is enabled and active: YES

* SMT is either mitigated or disabled: YES

> STATUS: NOT VULNERABLE (Your microcode and kernel are both up to date for this mitigation, and.
—mitigation is enabled)

*

CVE-2018-12130 aka ZombielLoad, microarchitectural fill buffer data sampling (MFBDS)

Mitigated according to the /sys interface: YES (Mitigation: Clear CPU buffers; SMT disabled)

* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)

* Kernel mitigation is enabled and active: YES

* SMT is either mitigated or disabled: YES

> STATUS: NOT VULNERABLE (Your microcode and kernel are both up to date for this mitigation, and_
—mitigation is enabled)

*

CVE-2018-12127 aka RIDL, microarchitectural load port data sampling (MLPDS)

* Mitigated according to the /sys interface: YES (Mitigation: Clear CPU buffers; SMT disabled)

* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)

* Kernel mitigation is enabled and active: YES

* SMT is either mitigated or disabled: YES

> STATUS: NOT VULNERABLE (Your microcode and kernel are both up to date for this mitigation, and.
—mitigation is enabled)

CVE-2019-11091 aka RIDL, microarchitectural data sampling uncacheable memory (MDSUM)

Mitigated according to the /sys interface: YES (Mitigation: Clear CPU buffers; SMT disabled)

* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)

* Kernel mitigation is enabled and active: YES

* SMT is either mitigated or disabled: YES

> STATUS: NOT VULNERABLE (Your microcode and kernel are both up to date for this mitigation, and.
—mitigation is enabled)

*

CVE-2019-11135 aka ZombielLoad V2, TSX Asynchronous Abort (TAA)
* Mitigated according to the /sys interface: YES (Not affected)
* TAA mitigation is supported by kernel: YES (found tsx_async_abort in kernel image)

(continues on next page)

3.7. Test Environment 405




CSIT REPORT, Release rls2001

(continued from previous page)

* TAA mitigation enabled and active: NO
> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-12207 aka No eXcuses, iTLB Multihit, machine check exception on page size changes (MCEPSC)
Mitigated according to the /sys interface: YES (KVM: Mitigation: Split huge pages)

* This system is a host running a hypervisor: NO

% iTLB Multihit mitigation is supported by kernel: YES (found itlb_multihit in kernel image)

% 1iTLB Multihit mitigation enabled and active: YES (KVM: Mitigation: Split huge pages)

> STATUS: NOT VULNERABLE (this system is not running a hypervisor)

*

> SUMMARY: CVE-2017-5753:0K CVE-2017-5715:0K CVE-2017-5754:0K CVE-2018-3640:0K CVE-2018-3639:0K CVE-
—2018-3615:0K CVE-2018-3620:0K CVE-2018-3646:0K CVE-2018-12126:0K CVE-2018-12130:0K CVE-2018-
—12127:0K CVE-2019-11091:0K CVE-2019-11135:0K CVE-2018-12207:0K

3.7.7 Calibration Data - Denverton

Following sections include sample calibration data measured on Denverton server at Intel SH labs.

A 2-Node Atom Denverton testing took place at Intel Corporation carefully adhering to FD.io CSIT best
practices.

Linux cmdline

$ cat /proc/cmdline

BOOT_IMAGE=/boot/vmlinuz-4.15.0-36-generic root=UUID=d3cfffd@-1e77-423a-a53a-a117199b6025 ro intel_
—iommu=on iommu=pt isolcpus=1-11 nohz_full=1-11 rcu_nocbs=1-11 default_hugepagesz=1G hugepagesz=1G_
—hugepages=8 intel_pstate=disable nmi_watchdog=0 numa_balancing=disable tsc=reliable nosoftlockup._
—quiet splash vt.handoff=7

Linux uname

$ uname -a
Linux 4.15.0-36-generic #39~16.04.1-Ubuntu SMP Tue Sep 25 08:59:23 UTC 2018 x86_64 x86_64 x86_64.
—GNU/Linux

System-level Core Jitter

$ sudo taskset -c 2 /home/testuser/pma_tools/jitter/jitter -c 2 -i 20

Linux Jitter testing program version 1.9

Iterations=20

The pragram will execute a dummy function 80000 times

Display is updated every 20000 displayUpdate intervals

Thread affinity will be set to core_id:2

Timings are in CPU Core cycles

Inst_Min: Minimum Excution time during the display update interval(default is ~1 second)
Inst_Max: Maximum Excution time during the display update interval(default is ~1 second)
Inst_jitter: Jitter in the Excution time during rhe display update interval. This is the value of._
—interest

last_Exec: The Excution time of last iteration just before the display update

Abs_Min: Absolute Minimum Excution time since the program started or statistics were reset
Abs_Max: Absolute Maximum Excution time since the program started or statistics were reset
tmp: Cumulative value calcualted by the dummy function

Interval: Time interval between the display updates in Core Cycles

Sample No: Sample number

(continues on next page)

406 Chapter 3. DPDK Performance




CSIT REPORT, Release rls2001

(continued from previous page)

Inst_Min Inst_Max Inst_jitter last_Exec Abs_min Abs_max tmp Interval o
—Sample No

177530 196100 18570 177530 177530 196100 4156751872 3556820054 u
B 177530 200784 23254 177530 177530 200784 321060864 3556897644 .
- 177530 196346 18816 177530 177530 200784 780337152 3556918674 -
- 177530 195962 18432 177530 177530 200784 1239613440 3556847928 .
o 177530 195960 18430 177530 177530 200784 1698889728 3556860214 .
- 177530 198824 21294 177530 177530 200784 2158166016 3556854934 -
o 177530 198522 20992 177530 177530 200784 2617442304 3556862410 -
- 177530 196362 18832 177530 177530 200784 3076718592 3556851636 .
o 177530 199114 21584 177530 177530 200784 3535994880 3556870846 -
- 177530 197194 19664 177530 177530 200784 3995271168 3556933584 -
(ﬁ10177530 198272 20742 177536 177530 200784 159580160 3556869044 -
911177530 197586 20056 177530 177530 200784 618856448 3556903482 -
H12177530 196072 18542 177530 177530 200784 1078132736 3556825540 o
913177530 196354 18824 177530 177530 200784 1537409024 3556881664 -
914177530 195906 18376 177530 177530 200784 1996685312 3556839924 -
{H15177530 199066 21536 177530 177530 200784 2455961600 3556860220 »
916177530 196968 19438 177530 177530 200784 2915237888 3556871890 -
<H17177530 195896 18366 177530 177530 200784 3374514176 3556855338 o
{H18177530 196020 18490 177530 177530 200784 3833790464 3556839820 -
<H19177530 196030 18500 177530 177530 200784 4293066752 3556889196 -
20
Memory Bandwidth

$ sudo /home/testuser/mlc --bandwidth_matrix
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --bandwidth_matrix

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes
Measuring Memory Bandwidths between nodes within system
Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)
Using all the threads from each core if Hyper-threading is enabled
Using Read-only traffic type
Memory node

Socket 0

0 28157.2

3.7. Test Environment 407




CSIT REPORT, Release rls2001

$ sudo /home/testuser/mlc --peak_injection_bandwidth
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --peak_injection_bandwidth

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes

Measuring Peak Injection Memory Bandwidths for the system
Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)

Using all the threads from each core if Hyper-threading is enabled
Using traffic with the following read-write ratios

ALL Reads : 28150.0
3:1 Reads-Writes : 27425.0
2:1 Reads-Writes : 27565.4
1:1 Reads-Writes : 27489.3
Stream-triad like: 26878.2

$ sudo /home/testuser/mlc --max_bandwidth
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --max_bandwidth

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes

Measuring Maximum Memory Bandwidths for the system

Will take several minutes to complete as multiple injection rates will be tried to get the best.
—bandwidth

Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)

Using all the threads from each core if Hyper-threading is enabled

Using traffic with the following read-write ratios

ALL Reads : 30032.40
3:1 Reads-Writes : 27450.88
2:1 Reads-Writes : 27567.46
1:1 Reads-Writes : 27501.90
Stream-triad like: 27124.82

Memory Latency

$ sudo /home/testuser/mlc --latency_matrix
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --latency_matrix

Using buffer size of 2000.000MB
Intel(R) Memory Latency Checker - v3.5
Measuring idle latencies (in ns)...
Memory node
Socket 0
0 93.1

$ sudo /home/testuser/mlc --idle_latency
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --idle_latency

Using buffer size of 200.000MB
Each iteration took 186.7 core clocks ( 93.4 ns)

$ sudo /home/testuser/mlc --loaded_latency
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --loaded_latency

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes

(continues on next page)

408 Chapter 3. DPDK Performance




CSIT REPORT, Release rls2001

(continued from previous page)

Measuring Loaded Latencies for the system

Using all the threads from each core if Hyper-threading is enabled
Using Read-only traffic type

Inject Latency Bandwidth

Delay (ns) MB/sec

00000 135.35 27186.0
00002 135.47 27176.9
00008 134.97 27063.3
00015 134.41 26825.6
00050 139.83 28419.1
00100 124.28 22616.4
00200 109.40 14139.8
00300 104.56 10275.1
00400 102.02 8120.0
00500 100.38 6751.4
00700  98.30 5124.9
01000  96.56 3852.7
01300  95.65 3149.0
01700 95.06 2585.4
02500  94.43 1988.8
03500 94.16 1621.1
05000  93.95 1343.1
09000  93.65 1052.6
20000 93.43 851.7
L1/L2/LLC Latency

$ sudo /home/testuser/mlc --c2c_latency
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --c2c_latency

Measuring cache-to-cache transfer latency (in ns)...
Local Socket L2->L2 HIT latency 8.8
Local Socket L2->L2 HITM latency 8.8

Spectre and Meltdown Checks

Following section displays the output of a running shell script to tell if system is vulnerable against the
several “speculative execution” CVEs that were made public in 2018. Script is available on Spectre &
Meltdown Checker Github?>®.

Spectre and Meltdown mitigation detection tool v@.42

Checking for vulnerabilities on current system

Kernel is Linux 4.15.0-51-generic #55-Ubuntu SMP Wed May 15 14:27:21 UTC 2019 x86_64
CPU is Intel(R) Atom(TM) CPU C3858 @ 2.00GHz

Hardware check
* Hardware support (CPU microcode) for mitigation techniques
* Indirect Branch Restricted Speculation (IBRS)
* SPEC_CTRL MSR is available: YES
* CPU indicates IBRS capability: YES (SPEC_CTRL feature bit)
* Indirect Branch Prediction Barrier (IBPB)
* PRED_CMD MSR is available: YES
* CPU indicates IBPB capability: YES (SPEC_CTRL feature bit)

(continues on next page)

156 https:/github.com/speed47/spectre-meltdown-checker

3.7. Test Environment 409



https://github.com/speed47/spectre-meltdown-checker
https://github.com/speed47/spectre-meltdown-checker

CSIT REPORT, Release rls2001

(continued from previous page)

* Single Thread Indirect Branch Predictors (STIBP)
* SPEC_CTRL MSR is available: YES
* CPU indicates STIBP capability: YES (Intel STIBP feature bit)
* Speculative Store Bypass Disable (SSBD)
* CPU indicates SSBD capability: YES (Intel SSBD)
* L1 data cache invalidation
* FLUSH_CMD MSR is available: NO
* CPU indicates L1D flush capability: NO
* Microarchitecture Data Sampling
* VERW instruction is available: YES (MD_CLEAR feature bit)
* Enhanced IBRS (IBRS_ALL)
* CPU indicates ARCH_CAPABILITIES MSR availability: YES
* ARCH_CAPABILITIES MSR advertises IBRS_ALL capability: NO
CPU explicitly indicates not being vulnerable to Meltdown/L1TF (RDCL_NO): YES
CPU explicitly indicates not being vulnerable to Variant 4 (SSB_NO): NO
CPU/Hypervisor indicates L1D flushing is not necessary on this system: YES
Hypervisor indicates host CPU might be vulnerable to RSB underflow (RSBA): NO
CPU explicitly indicates not being vulnerable to Microarchitectural Data Sampling (MDS_NO): YES
CPU supports Software Guard Extensions (SGX): NO
* CPU microcode is known to cause stability problems: NO (model 0x5f family @x6 stepping 0x1.

* % %X %X %X %

—ucode 0x2e cpuid 0x506f1)

* CPU microcode is the latest known available version: awk: fatal: cannot open file ‘bash for._

—reading (No such file or directory)
UNKNOWN (latest microcode version for your CPU model is unknown)

*

CPU vulnerability to the speculative execution attack variants

* Vulnerable to CVE-2017-5753 (Spectre Variant 1, bounds check bypass): YES

Vulnerable to CVE-2017-5715 (Spectre Variant 2, branch target injection): YES

Vulnerable to CVE-2017-5754 (Variant 3, Meltdown, rogue data cache load): NO

Vulnerable to CVE-2018-3640 (Variant 3a, rogue system register read): YES

Vulnerable to CVE-2018-3639 (Variant 4, speculative store bypass): YES

Vulnerable to CVE-2018-3615 (Foreshadow (SGX), L1 terminal fault): NO

Vulnerable to CVE-2018-3620 (Foreshadow-NG (0S), L1 terminal fault): NO

Vulnerable to CVE-2018-3646 (Foreshadow-NG (VMM), L1 terminal fault): NO

Vulnerable to CVE-2018-12126 (Fallout, microarchitectural store buffer data sampling (MSBDS)):.

b T T e

—NO

* Vulnerable to CVE-2018-12130 (ZombielLoad, microarchitectural fill buffer data sampling.

— (MFBDS)): NO

* Vulnerable to CVE-2018-12127 (RIDL, microarchitectural load port data sampling (MLPDS)): NO
* Vulnerable to CVE-2019-11091 (RIDL, microarchitectural data sampling uncacheable memory..

— (MDSUM)): NO

CVE-2017-5753 aka Spectre Variant 1, bounds check bypass

*
*

Mitigated according to the /sys interface: YES (Mitigation: __user pointer sanitization)
Kernel has array_index_mask_nospec: YES (1 occurrence(s) found of x86 64 bits array_index_mask_

—nospec())

*
*
>

Kernel has the Red Hat/Ubuntu patch: NO
Kernel has mask_nospec64 (arm64): NO
STATUS: NOT VULNERABLE (Mitigation: __user pointer sanitization)

CVE-2017-5715 aka Spectre Variant 2, branch target injection

*

Mitigated according to the /sys interface: YES (Mitigation: Full generic retpoline, IBPB:._

—sconditional, IBRS_FW, STIBP: disabled, RSB filling)

*

Mitigation 1
* Kernel is compiled with IBRS support: YES
* IBRS enabled and active: YES (for firmware code only)
* Kernel is compiled with IBPB support: YES
* IBPB enabled and active: YES
Mitigation 2
* Kernel has branch predictor hardening (arm): NO
* Kernel compiled with retpoline option: YES

(continues on next page)

410 Chapter 3. DPDK Performance




CSIT REPORT, Release rls2001

(continued from previous page)

> STATUS: NOT VULNERABLE (Full retpoline + IBPB are mitigating the vulnerability)

CVE-2017-5754 aka Variant 3, Meltdown, rogue data cache load
* Mitigated according to the /sys interface: YES (Not affected)
* Kernel supports Page Table Isolation (PTI): YES
* PTI enabled and active: UNKNOWN (dmesg truncated, please reboot and relaunch this script)
* Reduced performance impact of PTI: NO (PCID/INVPCID not supported, performance impact of PTI.
—will be significant)
* Running as a Xen PV DomU: NO
> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-3640 aka Variant 3a, rogue system register read
* CPU microcode mitigates the vulnerability: YES
> STATUS: NOT VULNERABLE (your CPU microcode mitigates the vulnerability)

CVE-2018-3639 aka Variant 4, speculative store bypass

* Mitigated according to the /sys interface: YES (Mitigation: Speculative Store Bypass disabled via.
—prctl and seccomp)

* Kernel supports disabling speculative store bypass (SSB): YES (found in /proc/self/status)

* SSB mitigation is enabled and active: YES (per-thread through prctl)

* SSB mitigation currently active for selected processes: YES (systemd-journald systemd-logind.
—ssystemd-networkd systemd-resolved systemd-timesyncd systemd-udevd)

> STATUS: NOT VULNERABLE (Mitigation: Speculative Store Bypass disabled via prctl and seccomp)

CVE-2018-3615 aka Foreshadow (SGX), L1 terminal fault
* CPU microcode mitigates the vulnerability: N/A
> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-3620 aka Foreshadow-NG (0S), L1 terminal fault

* Mitigated according to the /sys interface: YES (Not affected)

* Kernel supports PTE inversion: YES (found in kernel image)

* PTE inversion enabled and active: NO

> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-3646 aka Foreshadow-NG (VMM), L1 terminal fault
* Information from the /sys interface: Not affected
* This system is a host running a hypervisor: NO
* Mitigation 1 (KVM)
* EPT is disabled: NO
* Mitigation 2
* L1D flush is supported by kernel: YES (found flush_l1d in kernel image)
* L1D flush enabled: NO
* Hardware-backed L1D flush supported: NO (flush will be done in software, this is slower)
* Hyper-Threading (SMT) is enabled: NO
> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-12126 aka Fallout, microarchitectural store buffer data sampling (MSBDS)

* Mitigated according to the /sys interface: YES (Not affected)

* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)

* Kernel mitigation is enabled and active: NO

* SMT is either mitigated or disabled: NO

> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-12130 aka ZombielLoad, microarchitectural fill buffer data sampling (MFBDS)
Mitigated according to the /sys interface: YES (Not affected)

* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)

* Kernel mitigation is enabled and active: NO

* SMT is either mitigated or disabled: NO

> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

*

CVE-2018-12127 aka RIDL, microarchitectural load port data sampling (MLPDS)

(continues on next page)

3.7. Test Environment 411




CSIT REPORT, Release rls2001

(continued from previous page)

Mitigated according to the /sys interface: YES (Not affected)

Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)
Kernel mitigation is enabled and active: NO

SMT is either mitigated or disabled: NO

STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

Voo%x % % %

CVE-2019-11091 aka RIDL, microarchitectural data sampling uncacheable memory (MDSUM)
* Mitigated according to the /sys interface: YES (Not affected)

* Kernel supports using MD_CLEAR mitigation: YES (md_clear found in /proc/cpuinfo)

* Kernel mitigation is enabled and active: NO

* SMT is either mitigated or disabled: NO

> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

> SUMMARY: CVE-2017-5753:0K CVE-2017-5715:0K CVE-2017-5754:0K CVE-2018-3640:0K CVE-2018-3639:0K CVE-
—2018-3615:0K CVE-2018-3620:0K CVE-2018-3646:0K CVE-2018-12126:0K CVE-2018-12130:0K CVE-2018-
—12127:0K CVE-2019-11091:0K

3.7.8 Calibration Data - TaiShan

Following sections include sample calibration data measured on s17-t33-sutl server running in one of
the Cortex-A72 testbeds.

Calibration data obtained from all other servers in TaiShan testbeds shows the same or similar values.

Linux cmdline

$ cat /proc/cmdline

BOOT_IMAGE=/boot/vmlinuz-4.15.0-54-generic root=/dev/mapper/huawei--1--vg-root ro isolcpus=1-15,17-
—+31,33-47,49-63 nohz_full=1-15 17-31,33-47,49-63 rcu_nocbs=1-15 17-31,33-47,49-63 intel_
—siommu=on nmi_watchdog=0 audit=0 nosoftlockup processor.max_cstate=1 console=ttyAMA®,115200n8

Linux uname

$ uname -a
Linux s17-t33-sutl 4.15.0-54-generic #58-Ubuntu SMP Mon Jun 24 10:56:40 UTC 2019 aarch64 aarch64._
—aarch64 GNU/Linux

System-level Core Jitter

$ sudo taskset -c 3 /home/testuser/pma_tools/jitter/jitter -i 20

Linux Jitter testing program version 1.9

Iterations=30

The pragram will execute a dummy function 80000 times

Display is updated every 20000 displayUpdate intervals

Thread affinity will be set to core_id:7

Timings are in CPU Core cycles

Inst_Min: Minimum Excution time during the display update interval(default is ~1 second)
Inst_Max: Maximum Excution time during the display update interval(default is ~1 second)
Inst_jitter: Jitter in the Excution time during rhe display update interval. This is the value of._
—interest

last_Exec: The Excution time of last iteration just before the display update

Abs_Min: Absolute Minimum Excution time since the program started or statistics were reset
Abs_Max: Absolute Maximum Excution time since the program started or statistics were reset
tmp: Cumulative value calcualted by the dummy function

(continues on next page)

412 Chapter 3. DPDK Performance




CSIT REPORT, Release rls2001

(continued from previous page)

Interval:
Sample No:

Inst_Min
—Sample No

160022
1

160022

160022
< >3

160024
4

160022
-5

160022
—6

160022
7

160022
8

160022
—9

160022
10

160022
<11

160022
12

160022
13

160022
—14

160022
15

160022
16

160022
=17

160022
18

160022
—19

160024
20

160024
21

160022
22

160022
23

160022
24

160022
25

160022
26

160022
27

160022
28

Time interval between the display updates in Core Cycles

Sample number

Inst_Max

172254

173148

169460

170270

169660

169410

169012

169556

171684

171546

169248

168458

169574

169352

169100

169338

170828

173162

170482

170704

169302

171848

169438

169312

171368

171998

169740

169610

Inst_jitter last_Exec

12232

13126

9438

10246

9638

9388

8990

9534

11662

11524

9226

8436

9552

9330

9078

9316

10806

13140

10460

10680

9278

11826

9416

9290

11346

11976

9718

9588

160042

160044

160044

160044

160044

160040

160042

160044

160042

160024

160042

160042

160044

160044

160044

160042

160046

160026

160042

160044

160044

160044

160042

160042

160044

160042

160046

160044

Abs_min

160022

160022

160022

160022

160022

160022

160022

160022

160022

160022

160022

160022

160022

160022

160022

160022

160022

160022

160022

160022

160022

160022

160022

160022

160022

160022

160022

160022

Abs_max

172254

173148

173148

173148

173148

173148

173148

173148

173148

173148

173148

173148

173148

173148

173148

173148

173148

173162

173162

173162

173162

173162

173162

173162

173162

173162

173162

173162

tmp

1903230976

814809088

4021354496

2932932608

1844510720

756088832

3962634240

2874212352

1785790464

697368576

3903913984

2815492096

1727070208

638648320

3845193728

2756771840

1668349952

579928064

3786473472

2698051584

1609629696

521207808

3727753216

2639331328

1550909440

462487552

3669032960

2580611072

Interval

3204401362

3204619316

3204391306

3204385830

3204387290

3204375832

3204378924

3204374882

3204394596

3204602774

3204401676

3204256350

3204278116

3204327234

3204388132

3204380724

3204430452

3204611318

3204389896

3204422126

3204397334

3204389818

3204395382

3204371202

3204440464

3204609440

3204405826

3204390608

(continues on next page)

3.7. Test Environment

413




CSIT REPORT, Release rls2001

(continued from previous page)

160022 169254 9232 160044 160022 173162 1492189184 3204399760 -
29

160022 169386 9364 160046 160022 173162 403767296 3204417762 -
—30

Spectre and Meltdown Checks

Following section displays the output of a running shell script to tell if system is vulnerable against the
several “speculative execution” CVEs that were made public in 2018. Script is available on Spectre &
Meltdown Checker Github®>’.

Spectre and Meltdown mitigation detection tool v@.43

awk: cannot open bash (No such file or directory)

Checking for vulnerabilities on current system

Kernel is Linux 4.15.0-23-generic #25-Ubuntu SMP Wed May 23 18:02:16 UTC 2018 x86_64
CPU is Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz

Hardware check
* Hardware support (CPU microcode) for mitigation techniques
* Indirect Branch Restricted Speculation (IBRS)
* SPEC_CTRL MSR is available: YES
* CPU indicates IBRS capability: YES (SPEC_CTRL feature bit)
* Indirect Branch Prediction Barrier (IBPB)
* PRED_CMD MSR is available: YES
* CPU indicates IBPB capability: YES (SPEC_CTRL feature bit)
* Single Thread Indirect Branch Predictors (STIBP)
* SPEC_CTRL MSR is available: YES
* CPU indicates STIBP capability: YES (Intel STIBP feature bit)
* Speculative Store Bypass Disable (SSBD)
* CPU indicates SSBD capability: NO
* L1 data cache invalidation
* FLUSH_CMD MSR is available: NO
* CPU indicates L1D flush capability: NO
* Microarchitectural Data Sampling
* VERW instruction is available: NO
* Enhanced IBRS (IBRS_ALL)
* CPU indicates ARCH_CAPABILITIES MSR availability: NO
* ARCH_CAPABILITIES MSR advertises IBRS_ALL capability: NO
CPU explicitly indicates not being vulnerable to Meltdown/L1TF (RDCL_NO): NO
CPU explicitly indicates not being vulnerable to Variant 4 (SSB_NO): NO
CPU/Hypervisor indicates L1D flushing is not necessary on this system: NO
Hypervisor indicates host CPU might be vulnerable to RSB underflow (RSBA): NO
CPU explicitly indicates not being vulnerable to Microarchitectural Data Sampling (MDS_NO): NO
CPU explicitly indicates not being vulnerable to TSX Asynchronous Abort (TAA_NO): NO
CPU explicitly indicates not being vulnerable to iTLB Multihit (PSCHANGE_MSC_NO): NO
CPU explicitly indicates having MSR for TSX control (TSX_CTRL_MSR): NO
CPU supports Transactional Synchronization Extensions (TSX): YES (RTM feature bit)
CPU supports Software Guard Extensions (SGX): NO
* CPU microcode is known to cause stability problems: NO (model 0x55 family 0x6 stepping 0x4.
—ucode 0x2000043 cpuid 0x50654)
* CPU microcode is the latest known available version: awk: cannot open bash (No such file or._
—directory)
UNKNOWN (latest microcode version for your CPU model is unknown)
* CPU vulnerability to the speculative execution attack variants
* Vulnerable to CVE-2017-5753 (Spectre Variant 1, bounds check bypass): YES
* Vulnerable to CVE-2017-5715 (Spectre Variant 2, branch target injection): YES
* Vulnerable to CVE-2017-5754 (Variant 3, Meltdown, rogue data cache load): YES

b R . T

(continues on next page)

157 https:/github.com/speed47/spectre-meltdown-checker

414 Chapter 3. DPDK Performance



https://github.com/speed47/spectre-meltdown-checker
https://github.com/speed47/spectre-meltdown-checker

CSIT REPORT, Release rls2001

(continued from previous page)

Vulnerable to CVE-2018-3640 (Variant 3a, rogue system register read): YES
Vulnerable to CVE-2018-3639 (Variant 4, speculative store bypass): YES
Vulnerable to CVE-2018-3615 (Foreshadow (SGX), L1 terminal fault): NO
Vulnerable to CVE-2018-3620 (Foreshadow-NG (0S), L1 terminal fault): YES
Vulnerable to CVE-2018-3646 (Foreshadow-NG (VMM), L1 terminal fault): YES

* Vulnerable to CVE-2018-12126 (Fallout, microarchitectural store buffer data sampling (MSBDS)):.
—YES

* Vulnerable to CVE-2018-12130 (ZombielLoad, microarchitectural fill buffer data sampling.
—(MFBDS)): YES

* Vulnerable to CVE-2018-12127 (RIDL, microarchitectural load port data sampling (MLPDS)): YES

* Vulnerable to CVE-2019-11091 (RIDL, microarchitectural data sampling uncacheable memory.
— (MDSUM)): YES

* Vulnerable to CVE-2019-11135 (ZombielLoad V2, TSX Asynchronous Abort (TAA)): YES

* Vulnerable to CVE-2018-12207 (No eXcuses, iTLB Multihit, machine check exception on page size.
—changes (MCEPSC)): YES

* % %X %X %

CVE-2017-5753 aka Spectre Variant 1, bounds check bypass

* Mitigated according to the /sys interface: YES (Mitigation: __user pointer sanitization)

* Kernel has array_index_mask_nospec: YES (1 occurrence(s) found of x86 64 bits array_index_mask_
—nospec())

* Kernel has the Red Hat/Ubuntu patch: NO

* Kernel has mask_nospec64 (arm64): NO

> STATUS: NOT VULNERABLE (Mitigation: __user pointer sanitization)

CVE-2017-5715 aka Spectre Variant 2, branch target injection
* Mitigated according to the /sys interface: YES (Mitigation: Full generic retpoline, IBPB, IBRS_FW)
* Mitigation 1
* Kernel is compiled with IBRS support: YES
* IBRS enabled and active: YES (for firmware code only)
* Kernel is compiled with IBPB support: YES
* IBPB enabled and active: YES
* Mitigation 2
* Kernel has branch predictor hardening (arm): NO
* Kernel compiled with retpoline option: YES
* Kernel compiled with a retpoline-aware compiler: YES (kernel reports full retpoline.
—compilation)
* Kernel supports RSB filling: YES
> STATUS: NOT VULNERABLE (Full retpoline + IBPB are mitigating the vulnerability)

CVE-2017-5754 aka Variant 3, Meltdown, rogue data cache load
* Mitigated according to the /sys interface: YES (Mitigation: PTI)
* Kernel supports Page Table Isolation (PTI): YES
* PTI enabled and active: YES
* Reduced performance impact of PTI: YES (CPU supports INVPCID, performance impact of PTI will be.
—greatly reduced)
* Running as a Xen PV DomU: NO
> STATUS: NOT VULNERABLE (Mitigation: PTI)

CVE-2018-3640 aka Variant 3a, rogue system register read
* CPU microcode mitigates the vulnerability: NO
> STATUS: VULNERABLE (an up-to-date CPU microcode is needed to mitigate this vulnerability)

CVE-2018-3639 aka Variant 4, speculative store bypass

Mitigated according to the /sys interface: NO (Vulnerable)

* Kernel supports disabling speculative store bypass (SSB): YES (found in /proc/self/status)
* SSB mitigation is enabled and active: NO

> STATUS: VULNERABLE (Your CPU doesnt support SSBD)

*

CVE-2018-3615 aka Foreshadow (SGX), L1 terminal fault
* CPU microcode mitigates the vulnerability: N/A
> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

(continues on next page)

3.7. Test Environment 415




CSIT REPORT, Release rls2001

(continued from previous page)

CVE-2018-3620 aka Foreshadow-NG (0S), L1 terminal fault

* Kernel supports PTE inversion: NO

* PTE inversion enabled and active: UNKNOWN (sysfs interface not available)
> STATUS: VULNERABLE (Your kernel doesnt support PTE inversion, update it)

CVE-2018-3646 aka Foreshadow-NG (VMM), L1 terminal fault
* This system is a host running a hypervisor: NO
* Mitigation 1 (KVM)
* EPT is disabled: NO
* Mitigation 2
* L1D flush is supported by kernel: NO
% L1D flush enabled: UNKNOWN (cant find or read /sys/devices/system/cpu/vulnerabilities/11tf)
* Hardware-backed L1D flush supported: NO (flush will be done in software, this is slower)
* Hyper-Threading (SMT) is enabled: YES
> STATUS: NOT VULNERABLE (this system is not running a hypervisor)

CVE-2018-12126 aka Fallout, microarchitectural store buffer data sampling (MSBDS)

* Kernel supports using MD_CLEAR mitigation: NO

> STATUS: VULNERABLE (Neither your kernel or your microcode support mitigation, upgrade both to._
—mitigate the vulnerability)

CVE-2018-12130 aka ZombielLoad, microarchitectural fill buffer data sampling (MFBDS)

* Kernel supports using MD_CLEAR mitigation: NO

> STATUS: VULNERABLE (Neither your kernel or your microcode support mitigation, upgrade both to._
—mitigate the vulnerability)

CVE-2018-12127 aka RIDL, microarchitectural load port data sampling (MLPDS)

* Kernel supports using MD_CLEAR mitigation: NO

> STATUS: VULNERABLE (Neither your kernel or your microcode support mitigation, upgrade both to.
—mitigate the vulnerability)

CVE-2019-11091 aka RIDL, microarchitectural data sampling uncacheable memory (MDSUM)

* Kernel supports using MD_CLEAR mitigation: NO

> STATUS: VULNERABLE (Neither your kernel or your microcode support mitigation, upgrade both to_
—mitigate the vulnerability)

CVE-2019-11135 aka ZombielLoad V2, TSX Asynchronous Abort (TAA)

* TAA mitigation is supported by kernel: NO

* TAA mitigation enabled and active: NO (tsx_async_abort not found in sysfs hierarchy)
> STATUS: VULNERABLE (Your kernel doesnt support TAA mitigation, update it)

CVE-2018-12207 aka No eXcuses, iTLB Multihit, machine check exception on page size changes (MCEPSC)
* This system is a host running a hypervisor: NO

% iTLB Multihit mitigation is supported by kernel: NO

% iTLB Multihit mitigation enabled and active: NO (itlb_multihit not found in sysfs hierarchy)

> STATUS: NOT VULNERABLE (this system is not running a hypervisor)

> SUMMARY: CVE-2017-5753:0K CVE-2017-5715:0K CVE-2017-5754:0K CVE-2018-3640:K0 CVE-2018-3639:KO CVE-
—2018-3615:0K CVE-2018-3620:KO CVE-2018-3646:0K CVE-2018-12126:KO CVE-2018-12130:KO CVE-2018-
—12127:KO CVE-2019-11091:KO CVE-2019-11135:K0 CVE-2018-12207:0K

3.7.9 SUT Settings - Linux

System provisioning is done by combination of PXE boot unattented install and Ansible!®® described in
CSIT Testbed Setup®?.

Below a subset of the running configuration:

158 https://www.ansible.com
159 https:/git.fd.io/csit/tree/resources/tools/testbed-setup/README.md?h=rls2001

416 Chapter 3. DPDK Performance



https://www.ansible.com
https://git.fd.io/csit/tree/resources/tools/testbed-setup/README.md?h=rls2001

CSIT REPORT, Release rls2001

1. Ubuntu 18.04.x LTS

$ lsb_release -a
No LSB modules are available.
Distributor ID: Ubuntu

Description: Ubuntu 18.04.3 LTS
Release: 18.04
Codename: bionic

Linux Boot Parameters

e isolcpus=<cpu number>-<cpu number> used for all cpu cores apart from first core of each socket
used for running VPP worker threads and Qemu/LXC processes https:/www.kernel.org/doc/
Documentation/admin-guide/kernel-parameters.txt

¢ intel_pstate=disable - [X86] Do not enable intel_pstate as the default scaling driver for the sup-
ported processors. Intel P-State driver decide what P-state (CPU core power state) to use based
on requesting policy from the cpufreq core. [X86 - Either 32-bit or 64-bit x86] https:/www.kernel.
org/doc/Documentation/cpu-freq/intel-pstate.txt

e nohz_full=<cpu number>-<cpu number> - [KNLBOOT] In kernels built with CON-
FIG_NO_HZ_FULL=y, set the specified list of CPUs whose tick will be stopped whenever
possible. The boot CPU will be forced outside the range to maintain the timekeeping. The CPUs
in this range must also be included in the rcu_nocbs= set. Specifies the adaptive-ticks CPU cores,
causing kernel to avoid sending scheduling-clock interrupts to listed cores as long as they have a
single runnable task. [KNL - Is a kernel start-up parameter, SMP - The kernel is an SMP kernel].
https:/www.kernel.org/doc/Documentation/timers/NO_HZ.txt

e rcu_nocbs - [KNL] In kernels built with CONFIG_RCU_NOCB_CPU-=y, set the specified list of CPUs
to be no-callback CPUs, that never queue RCU callbacks (read-copy update). https:/www.kernel.
org/doc/Documentation/admin-guide/kernel-parameters.txt

e numa_balancing=disable - [KNL,X86] Disable automatic NUMA balancing.
¢ intel_iommu=enable - [DMAR] Enable Intel IOMMU driver (DMAR) option.
e iommu=on, iommu=pt - [x86, IA-64] Disable IOMMU bypass, using IOMMU for PCI devices.

e nmi_watchdog=0 - [KNL,BUGS=X86] Debugging features for SMP kernels. Turn hardlockup detec-
tor in nmi_watchdog off.

e nosoftlockup - [KNL] Disable the soft-lockup detector.

¢ tsc=reliable - Disable clocksource stability checks for TSC. [x86] reliable: mark tsc clocksource as
reliable, this disables clocksource verification at runtime, as well as the stability checks done at
bootup. Used to enable high-resolution timer mode on older hardware, and in virtualized environ-
ment.

e hpet=disable - [X86-32,HPET] Disable HPET and use PIT instead.
Hugepages Configuration
Huge pages are namaged via sysctl configuration located in /etc/sysctl.d/90-csit.conf on each testbed.

Default huge page size is 2M. The exact amount of huge pages depends on testbed. All the values are
defined in Ansible inventory - hosts files.

3.7.10 DUT Settings - DPDK

DPDK Version

DPDK-19.08

3.7. Test Environment 417



https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt
https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt
https://www.kernel.org/doc/Documentation/timers/NO_HZ.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt

CSIT REPORT, Release rls2001

DPDK Compile Parameters

make install T=<arch>-native-linuxapp-gcc -j

Testpmd Startup Configuration

Testpmd startup configuration changes per test case with different settings for $$CORES, $$RXQ and
max-pkt-len parameter if test is sending jumbo frames. Startup command template:

testpmd -c $$CORE_MASK -n 4 -- --numa --nb-ports=2 --portmask=0x3 --nb-cores=$$CORES [--max-pkt-
—1en=9000]1 --txgflags=0 --forward-mode=io --rxgq=$$RXQ --txg=$$TXQ --burst=64 --rxd=1024 --txd=1024_
—--disable-link-check --auto-start

L3FWD Startup Configuration

L3FWD startup configuration changes per test case with different settings for $$CORES and enable-
jumbo parameter if test is sending jumbo frames. Startup command template:

13fwd -1 $$CORE_LIST -n 4 -- -P -L -p 0x3 --config='${port_config}' [--enable-jumbo --max-pkt-
—1en=9000] --eth-dest=0,%{adj_mac0} --eth-dest=1,%{adj_macl} --parse-ptype

3.7.11 TG Settings - TRex

TG Version

TRex v2.73

DPDK Version

DPDK v19.05

TG Build Script Used

TRex installation1¢?

TG Startup Configuration

$ cat /etc/trex_cfg.yaml

- version : 2
interfaces : ["0000:0d:00.0","0000:0d:00.1"]
port_info
- dest_mac : [0x3c,0oxfd,oxfe,0x9c,0xee,0xf5]
src_mac : [0x3c,0xfd,0xfe,0x9c,Oxee,0xf4]
- dest_mac : [0x3c,0xfd,0xfe,0x9c,0xee,0xf4]
src_mac : [0x3c,0oxfd,oxfe,0x9c,0xee,0xf5]
TG Startup Command

$ sh -c¢ 'cd <t-rex-install-dir>/scripts/ && sudo nohup ./t-rex-64 -i -c 7 --prefix $(hostname) --
—hdrh > /tmp/trex.log 2>&1 &'> /dev/null

160 https:/git.fd.io/csit/tree/resources/tools/trex/trex_installer.sh?h=rls2001

418 Chapter 3. DPDK Performance



https://git.fd.io/csit/tree/resources/tools/trex/trex_installer.sh?h=rls2001

CSIT REPORT, Release rls2001

TG API Driver
TRex driverlé!
3.8 Documentation

CSIT DPDK Performance Tests Documentation®? contains detailed functional description and input pa-
rameters for each test case.

161 https://git.fd.io/csit/tree/resources/tools/trex/trex_stateless_profile.py?h=rls2001
162 https://docs.fd.io/csit/rls2001/doc/tests.dpdk.perf.html

3.8. Documentation 419


https://git.fd.io/csit/tree/resources/tools/trex/trex_stateless_profile.py?h=rls2001
https://docs.fd.io/csit/rls2001/doc/tests.dpdk.perf.html

CHAPTER
FOUR

VPP DEVICE

4.1 Overview

4.1.1 Virtual Topologies

CSIT VPP Device tests are executed in Physical containerized topologies created on demand using set of
scripts hosted and developed under CSIT repository. It runs on physical baremetal servers hosted by LF
FD.io project. Based on the packet path thru SUT Containers, three distinct logical topology types are
used for VPP DUT data plane testing:

1. vfNIC-to-vfNIC switching topologies.
2. vfNIC-to-vhost-user switching topologies.

3. vfNIC-to-memif switching topologies.

vfNIC-to-vfNIC Switching

The simplest physical topology for software data plane application like VPP is vfNIC-to-vfNIC switching.
Tested virtual topologies for 2-Node testbeds are shown in figures below.

420



CSIT REPORT, Release rls2001

2-Node Containerized Topologies

Host Server

cSUT[1.1] e cSUT[n.1]
VF VF[2n]
Linux - —
Kernel cTG[1.2] cTG[n.2]
i \V/
n-

1 1

-| Linux-Host 1,

| User-Space | i
(VFs mapped to VLAN IDs ) (7 'Z,Ii ‘BE
\% Eg} \= @ ' NIC x710

TenGigEth-0 Tequig_Eth—l TenGigEth-2 TenGigEth-3

External! External
g cable

Ethernet Wire Encapsulation: dothé

SUT1 is Docker Container (running Ubuntu, depending on the test suite), TG is a Traffic Generator (running
Ubuntu Container). SUTs run VPP SW application in Linux user-mode as a Device Under Test (DUT) within
the container. TG runs Scapy SW application as a packet Traffic Generator. Network connectivity between
SUTs and to TG is provided using virtual function of physical NICs.

Virtual topologies are created on-demand whenever a verification job is started (e.g. triggered by the
gerrit patch submission) and destroyed upon completion of all functional tests. Each node is a container
running on physical server. During the test execution, all nodes are reachable thru the Management (not
shown above for clarity).

VvfNIC-to-vhost-user Switching

vfNIC-to-vhost-user switching topology test cases require VPP DUT to communicate with Virtual Ma-
chine (VM) over Vhost-user virtual interfaces. VM is created on SUT1 for the duration of these particular
test cases only. Virtual test topology with VM is shown in the figure below.

4.1. Overview 421



CSIT REPORT, Release rls2001

2-Node Containerized Topologies: vfNIC-to-vhost-user switching

Host Server

cSUT[1.1]

VF[2]

Linux Fiul
Kernel cTG[1.2]

[2]

1)

| User-Space |

'| Linux-Host } : -
I ] i i) I (1)
VFs mapped to VLAN IDs % @ ! - NIC
i il x710

L[ ) e
TenGigEth-0 :Tenpig th-1 TenGigEth-2 TenGigEth-3

Ethernet Wire Encapsulation: dotlq External | External
; cable

VfNIC-to-memif Switching

vfNIC-to-memif switching topology test cases require VPP DUT to communicate with another Docker
Container over memif interfaces. Container is created for the duration of these particular test cases only
and it is running the same VPP version as running on DUT. Virtual test topology with Memif is shown in
the figure below.

422 Chapter 4. VPP Device



CSIT REPORT, Release rls2001

2-Node Containerized Topologies: VfNIC-to-memif switching

Host Server

Linux
Kernel

DUT1_CNF1|1]

cTG[1.2]

[ User-Space ]

-| Linux-Host }

NIC x710

[VFS apped to VLAN IDs ] = |
)\

TenGlg th 0 TerﬁlgEth 1 TenGlgEth—Z TenGigEth-3

—
External
cable

External! !

Ethernet Wire Encapsulation: dothé

4.1.2 Functional Tests Coverage

CSIT-2001 includes following VPP functionality tested in VPP Device environment:

Functionality

Description

ACL

Ingress Access Control List security for L2 Bridge-Domain MAC switching, IPv4
routing, IPvé routing.

COP COP address white-list and black-list filtering for IPv4 and IPvé routing.
IPSec IPSec tunnel and transport modes.

IPv4 IPv4 routing, ICMPv4.

IPv6 IPv4 routing, ICMPvé.

L2BD L2 Bridge-Domain switching for untagged Ethernet.

L2XC L2 Cross-Connect switching for untagged Ethernet.

Memif Interface

Baseline VPP memif interface tests.

QoS Policer Me-

Ingress packet rate metering and marking for IPv4, IPvé.

tering
Tap Interface Baseline Linux tap interface tests.
VLAN Tag L2 VLAN subinterfaces.

Vhost-user Inter-
face

Baseline VPP vhost-user interface tests.

VXLAN

VXLAN overlay tunneling for L2-over-IPv4 and -over-IPvé.

4.1.3 Tests Naming

CSIT-2001 follows a common structured naming convention for all performance and system functional
tests, introduced in CSIT-17.01.

4.1. Overview

423



CSIT REPORT, Release rls2001

The naming should be intuitive for majority of the tests. Complete description of CSIT test naming con-
vention is provided on Test Naming (page 436).

4.2 Release Notes

4.2.1 Changes in CSIT-2001

1. TEST FRAMEWORK

¢ Bug fixes.

¢ ARM platform compatibility.
2. TEST COVERAGE

¢ Increased test coverage: Dotlq, IPsec, 802.1ad VXLAN, COP whitelist, COP blacklist, QoS
Policer Metering, iACL whitelist, AVF driver, TAP Interface.

e Align vpp_device L2 Robot Keywords with performance L2 Robot Keywords.

4.2.2 Known Issues

List of known issues in CSIT-2001 for VPP functional tests in VPP Device:

# | JiralD | Issue Description

4.3 Integration Tests

4.3.1 Abstract

FD.io VPP software data plane technology has become very popular across a wide range of VPP eco-
system use cases, putting higher pressure on continuous verification of VPP software quality.

This document describes a proposal for design and implementation of extended continuous VPP test-
ing by extending existing test environments. Furthermore it describes and summarizes implementation
details of Integration and System tests platform 1-Node VPP_Device. It aims to provide a complete end-to-
end view of 1-Node VPP_Device environment in order to improve extendability and maintenance, under
the guideline of VPP core team.

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT"”, “SHOULD”, “SHOULD NOT",
“RECOMMENDED”, “MAY”, and “OPTIONAL" in this document are to be interpreted as described in RFC
8174163,

163 https://tools.ietf.org/html/rfc8174.html

424 Chapter 4. VPP Device


https://tools.ietf.org/html/rfc8174.html
https://tools.ietf.org/html/rfc8174.html

CSIT REPORT, Release rls2001

4.3.2 Overview

SSH or
Idocker
exec
SSH to known port
Jenkins Uni
slave nique
network

Nomad1

4.3.3 Physical Testbeds

All FD.io CSIT vpp-device tests are executed on physical testbeds built with bare-metal servers hosted
by LF FD.io project. Two 1-node testbed topologies are used:

e 2-Container Topology: Consisting of one Docker container acting as SUT (System Under Test) and
one Docker container as TG (Traffic Generator), both connected in ring topology via physical NIC
cross-connecting.

Current FD.io production testbeds are built with servers based on one processor generation of Intel
Xeons: Skylake (Platinum 8180). Testbeds built with servers based on Arm processors are in the pro-
cess of being added to FD.io production.

Following section describe existing production 1n-skx testbed.

1-Node Xeon Skylake (1n-skx)

1n-skx testbed is based on single SuperMicro SYS-7049GP-TRT server equipped with two Intel Xeon
Skylake Platinum 8180 2.5 GHz 28 core processors. Physical testbed topology is depicted in a figure
below.

4.3. Integration Tests 425



CSIT REPORT, Release rls2001

2-Node Containerized Topologies

Host Server

cSUT[1.1] ... Vl(::?g'li[n.l]
n

Linux
Kernel cTG[1.2]

-| Linux-Host 1,

User-Space | : ;
G
(VFs mapped to VLAN IDs ) on
Qlm @@ NIC X710

TenG|g th-0 TenGigEth-1 TenGigEth-2 TenGigEth-3

External: External
g cable

Ethernet Wire Encapsulation: dothé

Server is populated with the following NIC models:
1. NIC-1: x710-da4 4p10GE Intel.
2. NIC-2: x710-da4 4p10GE Intel.

All Intel Xeon Skylake servers run with Intel Hyper-Threading enabled, doubling the number of logical
cores exposed to Linux, with 56 logical cores and 28 physical cores per processor socket.

NIC interfaces are shared using Linux vfio_pci and VPP VF drivers:

e DPDK VF driver,

o Fortville AVF driver.
Provided Intel x710-da4 4p10GE NICs support 32 VFs per interface, 128 per NIC.
Complete 1n-skx testbeds specification is available on CSIT LF Testbeds!®* wiki page.

Total of two 1n-skx testbeds are in operation in FD.io labs.

1-Node Virtualbox (1n-vbox)

1n-skx testbed can run in single VirtualBox VM machine. This solution replaces the previously used
Vagrant environment based on 3 VMs.

VirtualBox VM MAY be created by Vagrant and MUST have additional 4 virtio NICs each pair attached to
separate private networks to simulate back-to-back connections. It SHOULD be 82545EM device model
(otherwise can be changed in boostrap scripts). Example of Vagrant configuration:

Vagrant.configure(2) do |c|
c.vm.network "private_network”, type: "dhcp”, auto_config: false,

(continues on next page)

164 https://wiki.fd.io/view/CSIT/Testbeds:_Xeon_Skx,_Arm,_Atom.

426 Chapter 4. VPP Device



https://wiki.fd.io/view/CSIT/Testbeds:_Xeon_Skx,_Arm,_Atom.

CSIT REPORT, Release rls2001

(continued from previous page)

virtualbox__intnet: "portl”, nic_type: "82545EM"
c.vm.network "private_network”, type: "dhcp”, auto_config: false,
virtualbox__intnet: "port2"”, nic_type: "82545EM"

c.vm.provider :virtualbox do |v|

v.customize ["modifyvm”, :id, "--nicpromisc2”, "allow-all"]
v.customize ["modifyvm”, :id, "--nicpromisc3”, "allow-all"]
v.customize ["modifyvm”, :id, "--nicpromisc4”, "allow-all"]
v.customize ["modifyvm”, :id, "--nicpromisc5”, "allow-all"]

Vagrant VM is populated with the following NIC models:
1. NIC-1: 82545EM Intel.
2. NIC-2: 82545EM Intel.
3. NIC-3: 82545EM Intel.
4. NIC-4: 82545EM Intel.

4.3.4 Containers

It was agreed on TWS (Technical Work Stream) call to continue with Ubuntu 18.04 LTS as a baseline
system with OPTIONAL extend to Centos 7 and SuSE per demand [TWSLink].

All DCR (Docker container) images are REQUIRED to be hosted on Docker registry available from LF
network, publicly available and trackable. For backup, tracking and contributing purposes all Dockerfiles
(including files needed for building container) MUST be available and stored in [fdiocsitgerrit] repository
under appropriate folders. This allows the peer review process to be done for every change of infrastruc-
ture related to scope of this document. Currently only csit-shim-dcr and csit-sut-dcr containers will be
stored and maintained under CSIT repository by CSIT contributors.

At the time of designing solution described in this document the interconnection between [dockerhub]
and [fdiocsitgerrit] for automated build purposes and image hosting cannot be established with the trust
and respectful to security of FD.io project. Unless adressed, DCR images will be placed in custom registry
service [fdioregistry]. Automated Jenkins jobs will be created in align of long term solution for container
lifecycle and ability to build new version of docker images.

In parallel, the effort is started to find the outsourced Docker registry service.

Versioning

As of initial version of vpp-device, we do have only single latest version of Docker image hosted on
[dockerhub]. This will be addressed as further improvement with proper semantic versioning.

jenkins-slave-dcr

This DCR acts as the Jenkins slave (known also as jenkins minion). It can connect over SSH protocol
to TCP port 6022 of csit-shim-dcr and executes non-interactive reservation script. Nomad is responsi-
ble for scheduling this container execution onto specific 1-Node VPP_Device testbed. It executes CSIT
environment including CSIT framework.

All software dependencies including VPP/DPDK that are not present in csit-sut-dcr container image
and/or needs to be compiled prior running on csit-sut-dcr SHOULD be compiled in this container.

o Container Image Location: Docker image at snergster/vpp-ubuntu18.
e Container Definition: Docker file specified at [JenkinsSlaveDcrFile].

e |nitializing: Container is initialized from within Consul by HashiCorp and Nomad by HashiCorp.

4.3. Integration Tests 427




CSIT REPORT, Release rls2001

csit-shim-dcr

This DCR acts as an intermediate layer running script responsible for orchestrating topologies under test
and reservation. Responsible for managing VF resources and allocation to DUT (Device Under Test), TG
(Traffic Generator) containers. This MUST to be done on csit-shim-dcr. This image also acts as the generic
reservation mechanics arbiter to make sure that only Y number of simulations are spawned on any given
HW node.

e Container Image Location: Docker image at snergster/csit-shim.
e Container Definition: Docker file specified at [CsitShimDcrFile].

e |Initializing: Container is initialized from within Consul by HashiCorp and Nomad by HashiCorp. Re-
quired docker parameters, to be able to run nested containers with VF reservation system are:
privileged, net=host, pid=host.

e Connectivity: Over SSH only, using <host>:6022 format. Currently using root user account as pri-
mary. From the jenkins slave it will be able to connect via env variable, since the jenkins slave doesn't
actually know what host its running on.

ssh -p 6022 root@10.30.51.node

csit-sut-dcr

This DCR acts as an SUT (System Under Test). Any DUT or TG application is installed there. It is REC-
OMMENDED to install DUT and all DUT dependencies via commands rpm -ihv on RedHat based OS or
dpkg -i on Debian based OS.

Container is designed to be a very lightweight Docker image that only installs packages and execute
binaries (previously built or downloaded on jenkins-slave-dcr) and contains libraries necessary to run
CSIT framework including those required by DUT/TG.

e Container Image Location: Docker image at snergster/csit-sut.
e Container Definition: Docker file specified at [CsitSutDcrFile].

o |nitializing:

docker run

# Run the container in the background and print the new container ID.
--detach=true

# Give extended privileges to this container. A "privileged” container is
# given access to all devices and able to run nested containers.
--privileged

# Publish all exposed ports to random ports on the host interfaces.
--publish-all

# Automatically remove the container when it exits.

-=rm

# Size of /dev/shm.

dcr_stc_params+="--shm-size 512M "

# Override access to PCI bus by attaching a filesystem mount to the
# container.

dcr_stc_params+="--mount type=tmpfs,destination=/sys/bus/pci/devices
# Mount vfio to be able to bind to see bound interfaces. We cannot use
# --device=/dev/vfio as this does not see newly bound interfaces.

n

dcr_stc_params+="--volume /dev/vfio:/dev/vfio "
# Mount docker.sock to be able to use docker deamon of the host.
dcr_stc_params+="--volume /var/run/docker.sock:/var/run/docker.sock "

# Mount /opt/boot/ where VM kernel and initrd are located.
dcr_stc_params+="--volume /opt/boot/:/opt/boot/ "

# Mount host hugepages for VMs.

dcr_stc_params+="--volume /dev/hugepages/:/dev/hugepages/ "

428 Chapter 4. VPP Device



CSIT REPORT, Release rls2001

Container name is catenated from csit- prefix and uuid generated uniquely for each container in-
stance.

e Connectivity: Over SSH only, using <host>[:<port>] format. Currently using root user account as
primary.

ssh -p <port> root@10.30.57.<node>

Container required to run as --privileged due to ability to create nested containers and have full
read/write access to sysfs (for bind/unbind). Docker automatically pick free network port (--publish-all)
for ability to connect over ssh. To be able to limit access to PCI bus, container is creating tmpfs mount
type in PCl bus tree. CSIT reservation script is dynamically linking only PCI devices (NIC cards) that are
reserved for particular container. This way it is not colliding with other containers. To make vfio work,
access to /dev/vfio must be granted.

4.3.5 Environment initialization

All 1-node servers are to be managed and provisioned via the [ansiblelink] set of playbooks with vpp-
device role. Full playbooks can be found under [fdiocsitansible] directory. This way we are able to track
all configuration changes of physical servers in gerrit (in structured yaml format) as well as we are able to
extend vpp-device to additional servers with less effort or re-stage servers in case of failure.

SR-IOV VF initialization is done via systemd service during host system boot up. Service with name csit-
initialize-vfs.service is created under systemd system context (/etc/systemd/system/). By default service
is calling /usr/local/bin/csit-initialize-vfs.sh with single parameter:

e start: Creates maximum number of virtual functions (VFs) (detected from sriov_totalvfs) for each
whitelisted PCI device.

e stop: Removes all VFs (VFs) for all whitelisted PCI device.

Service is considered active even when all of its processes exited successfully. Stopping service will au-
tomatically remove VFs.

[Unit]
Description=CSIT Initialize SR-IOV VFs
After=network.target

[Service]

Type=one-shot

RemainAfterExit=True
ExecStart=/usr/local/bin/csit-initialize-vfs.sh start
ExecStop=/usr/local/bin/csit-initialize-vfs.sh stop

[Install]
WantedBy=default.target

Script is driven by two array variables pci_blacklist/pci_whitelist. They MUST store all PCl addresses
in <domain>:<bus>:<device>.<func> format, where:

e pci_blacklist: PCI addresses to be skipped from VFs initialization (usefull for e.g. excluding manage-
ment network interfaces).

e pci_whitelist: PCl addresses to be included for VFs initialization.

4.3.6 VF reservation

During topology initialization phase of script, mutex is used to avoid multiple instances of script to interact
with each other during resources allocation. Mutal exclusion ensure that no two distinct instances of
script will get same resource list.

Reservation function reads the list of all available virtual function network devices in system:

4.3. Integration Tests 429




CSIT REPORT, Release rls2001

# Find the first ${device_count} number of available TG Linux network
# VF device names. Only allowed VF PCI IDs are filtered.
for netdev in ${tg_netdev[@]}
do
for netdev_path in $(grep -1 "${pci_id}" \
/sys/class/net/${netdev}*/device/device \
2> /dev/null)
do
if [[ ${#TG_NETDEVS[@]} -1t ${device_count} ]1; then
tg_netdev_name=$(dirname ${netdev_path})
tg_netdev_name=$(dirname ${tg_netdev_name})
TG_NETDEVS+=($(basename ${tg_netdev_name}))
else
break
fi
done
if [[ ${#TG_NETDEVS[@]} -eq ${device_count} ]71; then
break
fi
done

Where ${pci_id} is ID of white-listed VF PCI ID. For more information please see [pciids]. This act as
security constraint to prevent taking other unwanted interfaces. The output list of all VF network devices
is split into two lists for TG and SUT side of connection. First two items from each TG or SUT network
devices list are taken to expose directly to namespace of container. This can be done via commands:

$ ip link set ${netdev} netns ${DCR_CPIDS[tgl}
$ ip link set ${netdev} netns ${DCR_CPIDS[dut1]}

In this stage also symbolic links to PCI devices under sysfs bus directory tree are created in running con-
tainers. Once VF devices are assigned to container namespace and PCl deivces are linked to running
containers and mutex is exited. Selected VF network device automatically dissapear from parent con-
tainer namespace, so another instance of script will not find device under that namespace.

Once Docker container exits, network device is returned back into parent namespace and can be reused.

4.3.7 Network traffic isolation - Intel i40evf

In a virtualized environment, on Intel(R) Server Adapters that support SR-IQV, the virtual function (VF)
may be subject to malicious behavior. Software- generated layer two frames, like IEEE 802.3x (link flow
control), IEEE 802.1Qbb (priority based flow-control), and others of this type, are not expected and can
throttle traffic between the host and the virtual switch, reducing performance. To resolve this issue, con-
figure all SR-IOV enabled ports for VLAN tagging. This configuration allows unexpected, and potentially
malicious, frames to be dropped. [inteli40e]

To configure VLAN tagging for the ports on an SR-IOV enabled adapter, use the following command. The
VLAN configuration SHOULD be done before the VF driver is loaded or the VM is booted. [inteli40e¢]

’$ ip link set dev <PF netdev id> vf <id> vlan <vlan id>

For example, the following instructions will configure PF ethO and the first VF on VLAN 10.

’$ ip link set dev etho vf © vlan 10 ‘

VLAN Tag Packet Steering allows to send all packets with a specific VLAN tag to a particular SR-IOV
virtual function (VF). Further, this feature allows to designate a particular VF as trusted, and allows that
trusted VF to request selective promiscuous mode on the Physical Function (PF). [inteli40Oe]

To set a VF as trusted or untrusted, enter the following command in the Hypervisor:

430 Chapter 4. VPP Device



CSIT REPORT, Release rls2001

$ ip link set dev eth® vf 1 trust [on]|off]

Once the VF is designated as trusted, use the following commands in the VM to set the VF to promiscuous
mode. [inteli40e]

e For promiscuous all:

’$ ip link set eth2 promisc on

e For promiscuous Multicast:

’$ ip link set eth2 allmulti on

Note: By default, the ethtool priv-flag vf-true-promisc-support is set to off, meaning that promiscuous
mode for the VF will be limited. To set the promiscuous mode for the VF to true promiscuous and allow
the VF to see all ingress traffic, use the following command. $ ethtool set-priv-flags p261p1 vf-true-
promisc-support on The vf-true-promisc-support priv-flag does not enable promiscuous mode; rather, it
designates which type of promiscuous mode (limited or true) you will get when you enable promiscuous
mode using the ip link commands above. Note that this is a global setting that affects the entire device.
However,the vf-true-promisc-support priv-flag is only exposed to the first PF of the device. The PF
remains in limited promiscuous mode (unless it is in MFP mode) regardless of the vf-true-promisc-support
setting. [inteli40e]

Service described earlier csit-initialize-vfs.service is responsible for assigning 802.1Q vlan tagging to each
vitual function via physical function from list of white-listed PCl addresses by following (simplified) code.

SCRIPT_DIR="$(dirname $(readlink -e "${BASH_SOURCE[@]}"))"
source "${SCRIPT_DIR}/csit-initialize-vfs-data.sh"

# Initilize whitelisted NICs with maximum number of VFs.
pci_idx=0
for pci_addr in ${PCI_WHITELIST[@]}; do
if ! [[ ${PCI_BLACKLIST[x]} =~ "${pci_addr}” 11; then
pci_path="/sys/bus/pci/devices/${pci_addr}"
# SR-IOV initialization
case "${1:-start}"” in
"start” )
sriov_totalvfs=$(< "${pci_path}"/sriov_totalvfs)
"stop” )
sriov_totalvfs=0
esac
echo ${sriov_totalvfs} > "${pci_path}"/sriov_numvfs
# SR-IOV 802.1Q isolation
case "${1:-start}” in
"start"” )
pf=$(basename "${pci_path}"/net/*)
for vf in $(seq "${sriov_totalvfs}"); do
# PCI address index in array (pairing siblings).
if [[ -n ${PF_INDICES[@]} 1]
then
vlan_pf_idx=${PF_INDICES[$pci_addr]l}
else
vlan_pf_idx=$((pci_idx % (${#PCI_WHITELIST[@]}/2)))
fi
# 802.1Q base offset.
vlan_bs_off=1100
# 802.1Q PF PCI address offset.

(continues on next page)

4.3. Integration Tests 431




CSIT REPORT, Release rls2001

(continued from previous page)

vlan_pf_off=$(( vlan_pf_idx * 100 + vlan_bs_off ))
# 802.1Q VF PCI address offset.
vlan_vf_off=$(( vlan_pf_off + vf - 1))
# VLAN string.
vlan_str="vlan ${vlan_vf_off}"
# MAC string.
mac5="$(printf '%x' ${pci_idx})"
mac6="$(printf "'%x' $(( vf - 1 )))"
mac_str="mac ba:dc:0f:fe:${mac5}:${mac6}"
# Set 802.1Q VLAN id and MAC address
ip link set ${pf} vf $(( vf - 1)) ${mac_str} ${vlan_str}
ip link set ${pf} vf $(( vf - 1)) trust on
ip link set ${pf} vf $(( vf - 1)) spoof off
done
pci_idx=$(( pci_idx + 1))

esac

rmmod i40@evf

modprobe i40evf

fi
done

Assignment starts at VLAN 1100 and incrementing by 1 for each VF and by 100 for each white-listed PCI
address up to the middle of the PCI list. Second half of the lists is assumed to be directly (cable) paired
siblings and assigned with same 802.1Q VLANSs as its siblings.

4.3.8 Open tasks

Security

Note: Switch to non-privileged containers: As of now all three container flavors are using privileged
containers to make it working. Explore options to switch containers to non-privileged with explicit rather
implicit privileges.

Note: Switch to testuser account intead of root.

Maintainability

Note: Docker image distribution: Create jenkins jobs with full pipiline of CI/CD for CSIT Docker images.

Stability

Note: Implement queueing mechanism: Currently there is no mechanics that would place starving jobs
in queue in case of no resources available.

Note: Replace reservation script with Docker network plugin written in GOLANG/SH/Python - platform
independent.

432 Chapter 4. VPP Device




CSIT REPORT, Release rls2001

4.3.9 Links
4.4 Documentation

CSIT VPP Device Tests Documentation!”> contains detailed functional description and input parameters
for each test case.

175 https://docs.fd.io/csit/rls2001/doc/tests.vpp.device.html

4.4. Documentation 433


https://docs.fd.io/csit/rls2001/doc/tests.vpp.device.html

CHAPTER
FIVE

CSIT FRAMEWORK

5.1 Design

FD.io CSIT system design needs to meet continuously expanding requirements of FD.io projects including
VPP, related sub-systems (e.g. plugin applications, DPDK drivers) and FD.io applications (e.g. DPDK appli-
cations), as well as growing number of compute platforms running those applications. With CSIT project
scope and charter including both FD.io continuous testing AND performance trending/comparisons,
those evolving requirements further amplify the need for CSIT framework modularity, flexibility and us-
ability.

5.1.1 Design Hierarchy
CSIT follows a hierarchical system design with SUTs and DUTs at the bottom level of the hierarchy, pre-

sentation level at the top level and a number of functional layers in-between. The current CSIT system
design including CSIT framework is depicted in the figure below.

CSIT System Design Hierarchy

Users

Presentation & Analytics

Robot Calls

Shell scripts

CSIT Tests

Tests (vpp-verify, csit-verify, ...)

Functionality Programing
- CSIT Framework e
Level-2 Robot Keyword Inventory

Python Calls

Tools
(doc-gen,
) Test Topology
Performance Traffic Functional data files report-
Generator Drivers Traffic (Python) (yaml) o
. (TRex) test_env-
Python Library Generator i)
X X Scripts
Traffic Profiles (Scapy)
Shell
CSIT Tests VPP: VAT Cals  |Python Calls cript:
SUT DUT SUT DUT SUT TG SUT DUT SUT DUT SUT TG SUT DUT SUT TG
Physical topologies Virtualied topologies i.e. VIRL N

A brief bottom-up description is provided here:

434



CSIT REPORT, Release rls2001

1. SUTs, DUTs, TGs
e SUTs - Systems Under Test;
e DUTs - Devices Under Test;

e TGs - Traffic Generators;

2. Level-1 libraries - Robot and Python

e Lowest level CSIT libraries abstracting underlying test environment, SUT, DUT and TG
specifics;

Used commonly across multiple L2 KWs;

Performance and functional tests:

- L1 KWs (KeyWords) are implemented as RF libraries and Python libraries;

Performance TG L1 KWs:

- All L1 KWs are implemented as Python libraries:

*

*

Support for TRex only today;
CSIT IXIA drivers in progress;

Performance data plane traffic profiles:

- TG-specific stream profiles provide full control of:

*

*

*

Packet definition - layers, MACs, IPs, ports, combinations thereof e.g. IPs and UDP
ports;

Stream definitions - different streams can run together, delayed, one after each other;

Stream profiles are independent of CSIT framework and can be used in any T-rex setup,
can be sent anywhere to repeat tests with exactly the same setup;

Easily extensible - one can create a new stream profile that meets tests requirements;

Same stream profile can be used for different tests with the same traffic needs;

¢ Functional data plane traffic scripts:

- Scapy specific traffic scripts;

3. Level-2 libraries - Robot resource files:

e Higher level CSIT libraries abstracting required functions for executing tests;

o L2 KWs are classified into the following functional categories:

- Configuration, test, verification, state report;

- Suite setup, suite teardown;

- Test setup, test teardown;
4. Tests - Robot:

e Test suites with test cases;

e Performance tests using physical testbed environment:
- VPP;
- DPDK-Testpmd;
- DPDK-L3Fwd;

e Tools:

- Documentation generator;

- Report generator;

5.1. Design

435



CSIT REPORT, Release rls2001

- Testbed environment setup ansible playbooks;

- Operational debugging scripts;

5.1.2 Test Lifecycle Abstraction

A well coded test must follow a disciplined abstraction of the test lifecycles that includes setup, con-
figuration, test and verification. In addition to improve test execution efficiency, the commmon aspects
of test setup and configuration shared across multiple test cases should be done only once. Translating
these high-level guidelines into the Robot Framework one arrives to definition of a well coded RF tests
for FD.io CSIT. Anatomy of Good Tests for CSIT:

1. Suite Setup - Suite startup Configuration common to all Test Cases in suite: uses Configuration
KWs, Verification KWs, StateReport KWs;

2. Test Setup - Test startup Configuration common to multiple Test Cases: uses Configuration KWs,
StateReport KWs;

3. Test Case - uses L2 KWs with RF Gherkin style:

e prefixed with {Given} - Verification of Test setup, reading state: uses Configuration KWs, Veri-
fication KWs, StateReport KWs;

¢ prefixed with {When} - Test execution: Configuration KWs, Test KWs;

e prefixed with {Then} - Verification of Test execution, reading state: uses Verification KWs,
StateReport KWs;

4. Test Teardown - post Test teardown with Configuration cleanup and Verification common to multi-
ple Test Cases - uses: Configuration KWs, Verification KWs, StateReport KWs;

5. Suite Teardown - Suite post-test Configuration cleanup: uses Configuration KWs, Verification KWs,
StateReport KWs;

5.1.3 RF Keywords Functional Classification
CSIT RF KWs are classified into the functional categories matching the test lifecycle events described
earlier. All CSIT RF L2 and L1 KWs have been grouped into the following functional categories:
1. Configuration;
. Test;
. Verification;
. StateReport;
. SuiteSetup;
. TestSetup;

. SuiteTeardown;

00 N O o A WDN

. TestTeardown;

5.1.4 RF Keywords Naming Guidelines

Readability counts: “.code is read much more often than it is written.” Hence following a good and con-
sistent grammar practice is important when writing RF KeyWords and Tests. All CSIT test cases are coded
using Gherkin style and include only L2 KWs references. L2 KWs are coded using simple style and in-
clude L2 KWs, L1 KWs, and L1 python references. To improve readability, the proposal is to use the same
grammar for both RF KW styles, and to formalize the grammar of English sentences used for naming the
RF KWs. RF KWs names are short sentences expressing functional description of the command. They
must follow English sentence grammar in one of the following forms:

436 Chapter 5. CSIT Framework



CSIT REPORT, Release rls2001

1. Imperative - verb-object(s): “Do something”, verb in base form.

2. Declarative - subject-verb-object(s): “Subject does something”, verb in a third-person singular present
tense form.

3. Affirmative - modal_verb-verb-object(s): “Subject should be something”, “Object should exist”, verb in
base form.

4. Negative - modal_verb-Not-verb-object(s): “Subject should not be something”, “Object should not ex-
ist”, verb in base form.

Passive form MUST NOT be used. However a usage of past participle as an adjective is okay. See usage
examples provided in the Coding guidelines section below. Following sections list applicability of the
above grammar forms to different RF KW categories. Usage examples are provided, both good and bad.

5.1.5 Coding Guidelines

Coding guidelines can be found on Design optimizations wiki pagel”.

5.2 Test Naming

5.2.1 Background
CSIT-2001 follows a common structured naming convention for all performance and system functional
tests, introduced in CSIT-1701.

The naming should be intuitive for majority of the tests. Complete description of CSIT test naming con-
vention is provided on CSIT test naming wiki page'””. Below few illustrative examples of the naming
usage for test suites across CSIT performance, functional and Honeycomb management test areas.

5.2.2 Naming Convention
The CSIT approach is to use tree naming convention and to encode following testing information into
test suite and test case names:
1. packet network port configuration
e port type, physical or virtual;

e number of ports;

NIC model, if applicable;

port-NIC locality, if applicable;
2. packet encapsulations;
3. VPP packet processing

e packet forwarding mode;

e packet processing function(s);
4. packet forwarding path

e if present, network functions (processes, containers, VMs) and their topology within the com-
puter;

5. main measured variable, type of test.

176 https://wiki.fd.io/view/CSIT/Design_Optimizations
177 https://wiki.fd.io/view/CSIT/csit-test-naming

5.2. Test Naming 437


https://wiki.fd.io/view/CSIT/Design_Optimizations
https://wiki.fd.io/view/CSIT/csit-test-naming

CSIT REPORT, Release rls2001

Proposed convention is to encode ports and NICs on the left (underlay), followed by outer-most frame
header, then other stacked headers up to the header processed by vSwitch-VPP, then VPP forwarding
function, then encap on vhost interface, number of vhost interfaces, number of VMs. If chained VMs
present, they get added on the right. Test topology is expected to be symmetric, in other words packets
enter and leave SUT through ports specified on the left of the test name. Here some examples toillustrate
the convention followed by the complete legend, and tables mapping the new test filenames to old ones.

5.2.3 Naming Examples

CSIT test suite naming examples (filename.robot) for common tested VPP topologies:
1. Physical port to physical port - a.k.a. NIC-to-NIC, Phy-to-Phy, P2P

PortNICConfig-WireEncapsulation-PacketForwardingFunction-  PacketProcessingFunction1-...-
PacketProcessingFunctionN-TestType

10ge2p1x520-dot1q-12bdbasemaclrn-ndrdisc.robot => 2 ports of 10GE on Intel x520 NIC,
dotlqg tagged Ethernet, L2 bridge-domain baseline switching with MAC learning, NDR
throughput discovery.

10ge2p1x520-ethip4vxlan-12bdbasemaclrn-ndrchk.robot => 2 ports of 10GE on Intel x520 NIC,
IPv4 VXLAN Ethernet, L2 bridge-domain baseline switching with MAC learning, NDR through-
put discovery.

10ge2p1x520-ethip4-ip4base-ndrdisc.robot => 2 ports of 10GE on Intel x520 NIC, IPv4 baseline
routed forwarding, NDR throughput discovery.

10ge2p 1x520-ethipé-ip6scale200k-ndrdisc.robot => 2 ports of 10GE on Intel x520 NIC, IPvé
scaled up routed forwarding, NDR throughput discovery.

10ge2p 1x520-ethip4-ip4base-iacldstbase-ndrdisc.robot => 2 ports of 10GE on Intel x520 NIC,
IPv4 baseline routed forwarding, ingress Access Control Lists baseline matching on destination,
NDR throughput discovery.

40ge2p1vic1385-ethip4-ip4base-ndrdisc.robot => 2 ports of 40GE on Cisco vic1385 NIC, IPv4
baseline routed forwarding, NDR throughput discovery.

eth2p-ethip4-ip4base-func.robot => 2 ports of Ethernet, IPv4 baseline routed forwarding, func-
tional tests.

2. Physical port to VM (or VM chain) to physical port - ak.a. NIC2VM2NIC, P2V2P,
NIC2VMchain2NIC, P2V2V2P

PortNICConfig-WireEncapsulation-PacketForwardingFunction-  PacketProcessingFunction1-...-
PacketProcessingFunctionN-VirtEncapsulation- VirtPortConfig-VMconfig-TestType

10ge2p1x520-dot1q-12bdbasemacirn-eth-2vhost- 1vm-ndrdisc.robot => 2 ports of 10GE on Intel
x520 NIC, dotlq tagged Ethernet, L2 bridge-domain switching to/from two vhost interfaces
and one VM, NDR throughput discovery.

10ge2p1x520-ethip4vxlan-12bdbasemaclrn-eth-2vhost-1vm-ndrdisc.robot => 2 ports of 10GE
on Intel x520 NIC, IPv4 VXLAN Ethernet, L2 bridge-domain switching to/from two vhost in-
terfaces and one VM, NDR throughput discovery.

10ge2p 1x520-ethip4vxlan-12bdbasemaclrn-eth-4vhost-2vm-ndrdisc.robot => 2 ports of 10GE
on Intel x520 NIC, IPv4 VXLAN Ethernet, L2 bridge-domain switching to/from four vhost in-
terfaces and two VMs, NDR throughput discovery.

eth2p-ethip4vxlan-12bdbasemacirn-eth-2vhost-1vm-func.robot => 2 ports of Ethernet, IPv4
VXLAN Ethernet, L2 bridge-domain switching to/from two vhost interfaces and one VM, func-
tional tests.

3. API CRUD tests - Create (Write), Read (Retrieve), Update (Modify), Delete (Destroy) operations for
configuration and operational data

438

Chapter 5. CSIT Framework



CSIT REPORT, Release rls2001

e ManagementTestKeyword-ManagementOperation-ManagedFunction1-...- ManagedFunctionN-
ManagementAPI1-ManagementAPIN-TestType

o mgmt-cfg-lisp-apivat-func => configuration of LISP with VAT API calls, functional tests.

e mgmt-cfg-12bd-apihc-apivat-func => configuration of L2 Bridge-Domain with Honeycomb API
and VAT API calls, functional tests.

e mgmt-oper-int-apihcnc-func => reading status and operational data of interface with Honey-
comb NetConf API calls, functional tests.

e mgmt-cfg-int-tap-apihcnc-func => configuration of tap interfaces with Honeycomb NetConf
API calls, functional tests.

e mgmt-notif-int-subint-apihcnc-func => notifications of interface and sub-interface events with
Honeycomb NetConf Notifications, functional tests.

For complete description of CSIT test naming convention please refer to CSIT test naming wiki page®’8.

5.3 Presentation and Analytics

5.3.1 Overview
The presentation and analytics layer (PAL) is the fourth layer of CSIT hierarchy. The model of presentation
and analytics layer consists of four sub-layers, bottom up:
e sL1 - Data - input data to be processed:
- Static content - .rst text files, .svg static figures, and other files stored in the CSIT git repository.

- Data to process - .xml files generated by Jenkins jobs executing tests, stored as robot results
files (output.xml).

- Specification - .yaml file with the models of report elements (tables, plots, layout, ...) generated
by this tool. There is also the configuration of the tool and the specification of input data (jobs
and builds).

e sl.2 - Data processing

- The data are read from the specified input files (.xml) and stored as multi-indexed pan-
das.Series!”?.

- This layer provides also interface to input data and filtering of the input data.
e sL.3 - Data presentation - This layer generates the elements specified in the specification file:
- Tables: .csv files linked to static .rst files.
- Plots: .html files generated using plot.ly linked to static .rst files.
e sl4 - Report generation - Sphinx generates required formats and versions:
- formats: html, pdf

- versions: minimal, full (TODO: define the names and scope of versions)

178 https://wiki.fd.io/view/CSIT/csit-test-naming
179 https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html

5.3. Presentation and Analytics 439


https://wiki.fd.io/view/CSIT/csit-test-naming
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html

CSIT REPORT, Release ris2001

Sl Report generation Jenkins plots
Sphinx

.html / .pdf (then stored in nexus)

Read files Read files

sL3 Data presentation

Plots Files Tables JenpliLngsianot
plotly - .html .RST Pandas - .csv himl

Python calls Python calls Pythor] calls

sL2 Data processing

Read files

pandas
Data model in JSON
Specification, Input data (Pandas.Series)

sL1 EETE
.RST .YAML ZIP (.XML)
Static content (CSIT gerrit) Specification (CSIT gerrit) Data to process (Jenkins)

5.3.2 Data

Read files Read files Read files

Report Specification

The report specification file defines which data is used and which outputs are generated. It is human
readable and structured. It is easy to add / remove / change items. The specification includes:

e Specification of the environment.

Configuration of debug mode (optional).

Specification of input data (jobs, builds, files, ...).

Specification of the output.

What and how is generated: - What: plots, tables. - How: specification of all properties and param-
eters.

.yaml format.

Structure of the specification file

The specification file is organized as a list of dictionaries distinguished by the type:

type: "environment”
type: "configuration”
type: "debug”

type: "static”

type: "input”

(continues on next page)

440 Chapter 5. CSIT Framework




CSIT REPORT, Release rls2001

(continued from previous page)

type: "output”

type: "table”
type: "plot”
type: "file”

Each type represents a section. The sections “environment”, “debug”, “static”, “input” and “output” are
listed only once in the specification; “table”, “file” and “plot” can be there multiple times.

Sections “debug”, “table”, “file” and “plot” are optional.

Table(s), files(s) and plot(s) are referred as “elements” in this text. It is possible to define and implement

other elements if needed.

Section: Environment

This section has the following parts:
e type: “environment” - says that this is the section “environment”.
e configuration - configuration of the PAL.
e paths - paths used by the PAL.

e urls - urls pointing to the data sources.

e make-dirs - a list of the directories to be created by the PAL while preparing the environment.

e remove-dirs - a list of the directories to be removed while cleaning the environment.

e build-dirs - a list of the directories where the results are stored.

The structure of the section “Environment” is as follows (example):

type: "environment”

configuration:
# Debug mode:
# - Skip:
# - Download of input data files
# - Do:
# - Read data from given zip / xml files
# - Set the configuration as it is done in normal mode
# If the section "type: debug” is missing, CFG[DEBUG] is set to 0.

CFG[DEBUG]: @

paths:
# Top level directories:
## Working directory
DIR[WORKING]: "_tmp"
## Build directories
DIR[BUILD,HTML]: "_build”
DIR[BUILD,LATEX]: "_build_latex”

# Static .rst files
DIR[RST]: "../../../docs/report”

# Working directories

## Input data files (.zip, .xml)
DIR[WORKING,DATA]: " /data”
## Static source files from git

(continues on next page)

5.3. Presentation and Analytics

441




CSIT REPORT, Release rls2001

(continued from previous page)

DIRLCWORKING,SRC]: "{DIR[WORKING]}/src”
DIRLCWORKING, SRC,STATICI: "{DIR[WORKING,SRC]}/_static”

# Static html content

DIR[STATIC]: "{DIR[BUILD,HTML]}/_static”
DIR[STATIC,VPP]: "{DIR[STATICI}/vpp"
DIR[STATIC,DPDK]: "{DIR[STATIC]}/dpdk”
DIR[STATIC,ARCH]: "{DIR[STATIC]}/archive”

# Detailed test results

DIR[DTR]: "{DIR[WORKING,SRC]}/detailed_test_results”

DIR[DTR,PERF,DPDK]: "{DIR[DTR]1}/dpdk_performance_results”

DIR[DTR,PERF,VPP]: "{DIR[DTR]}/vpp_performance_results”

DIR[DTR,FUNC,VPP]: "{DIR[DTR]}/vpp_functional_results”

DIR[DTR,PERF,VPP,IMPRV]: "{DIR[WORKING,SRC]}/vpp_performance_tests/performance_improvements"”

# Detailed test configurations

DIR[DTC]: "{DIR[WORKING,SRC]}/test_configuration”
DIR[DTC,PERF,VPP]: "{DIR[DTC]}/vpp_performance_configuration”
DIR[DTC,FUNC,VPP]: "{DIR[DTC]}/vpp_functional_configuration”

# Detailed tests operational data
DIR[DTO]: "{DIR[WORKING,SRC]}/test_operational_data”
DIR[DTO,PERF,VPP]: "{DIR[DTO]}/vpp_performance_operational_data”

# .css patch file to fix tables generated by Sphinx
DIR[CSS_PATCH_FILE]: "{DIR[STATIC]}/theme_overrides.css"
DIR[CSS_PATCH_FILE2]: "{DIR[WORKING,SRC,STATIC]}/theme_overrides.css”

urls:
URLLJENKINS,CSIT]: "https://jenkins.fd.io/view/csit/job"
URLLJENKINS,HC]: "https://jenkins.fd.io/view/hc2vpp/job”

make-dirs:

# List the directories which are created while preparing the environment.
# All directories MUST be defined in "paths” section.

- "DIR[WORKING,DATA]"

- "DIR[STATIC,VPP]"

- "DIR[STATIC,DPDK]"

- "DIR[STATIC,ARCH]"

- "DIR[BUILD,LATEX]"

- "DIR[WORKING,SRC]"

- "DIR[WORKING, SRC,STATIC]"

remove-dirs:

# List the directories which are deleted while cleaning the environment.
# All directories MUST be defined in "paths" section.

#- "DIR[BUILD,HTML]"

build-dirs:

# List the directories where the results (build) is stored.
# All directories MUST be defined in "paths” section.

- "DIR[BUILD,HTML]"

- "DIR[BUILD,LATEX]"

It is possible to use defined items in the definition of other items, e.g.:

DIR[WORKING,DATA]: "{DIR[WORKING]}/data"

will be automatically changed to

442 Chapter 5. CSIT Framework




CSIT REPORT, Release rls2001

DIR[CWORKING,DATA]: "_tmp/data”

Section: Configuration

This section specifies the groups of parameters which are repeatedly used in the elements defined later

in the specification file. It has the following parts:

e data sets - Specification of data sets used later in element’s specifications to define the input data.

e plot layouts - Specification of plot layouts used later in plots’ specifications to define the plot layout.

The structure of the section “Configuration” is as follows (example):

type: "configuration”
data-sets:
plot-vpp-throughput-latency:
csit-vpp-perf-1710-all:
-1
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
vpp-perf-results:
csit-vpp-perf-1710-all:
- 20
- 23
plot-layouts:
plot-throughput:
xaxis:
autorange: True
autotick: False
fixedrange: False
gridcolor: "rgb(238, 238, 238)"
linecolor: "rgh(238, 238, 238)"
linewidth: 1
showgrid: True
showline: True
showticklabels: True
tickcolor: "rgb(238, 238, 238)"
tickmode: "linear”
title: "Indexed Test Cases”
zeroline: False

yaxis:
gridcolor: "rgb(238, 238, 238)'"
hoverformat: ".4s"

linecolor: "rgb(238, 238, 238)"
linewidth: 1
range: []
showgrid: True
showline: True
showticklabels: True
tickcolor: "rgb(238, 238, 238)"
title: "Packets Per Second [pps]”
zeroline: False

boxmode: "group”

(continues on next page)

5.3. Presentation and Analytics

443




CSIT REPORT, Release rls2001

(continued from previous page)

boxgroupgap: 0.5
autosize: False
margin:

t: 50

b: 20

1: 50

r: 20
showlegend: True
legend:

orientation: "h”
width: 700
height: 1000

The definitions from this sections are used in the elements, e.g.:

type: "plot”
title: "VPP Performance 64B-1t1c-(eth|dotlq|dotlad)-(12xchase|l2bdbasemaclrn)-ndrdisc”
algorithm: "plot_performance_box"
output-file-type: ".html”
output-file: " /64B-1t1c-12-sel1-ndrdisc”
data:
"plot-vpp-throughput-latency”
filter: "'64B' and ('BASE' or 'SCALE') and 'NDRDISC' and '1T1C' and ('L2BDMACSTAT' or 'L2BDMACLRN
—"' or 'L2XCFWD') and not 'VHOST'"
parameters:
- "throughput”
- "parent”
traces:
hoverinfo: "x+y"
boxpoints: "outliers”
whiskerwidth: 0
layout:
title: "64B-1tl1c-(eth|dotlq|dotlad)-(12xcbase|l2bdbasemaclrn)-ndrdisc”
layout:
"plot-throughput”

Section: Debug mode

This section is optional as it configures the debug mode. It is used if one does not want to download input
data files and use local files instead.

If the debug mode is configured, the “input” section is ignored.
This section has the following parts:
e type: “debug” - says that this is the section “debug”.
e general:
- input-format - xml or zip.

- extract - if “zip” is defined as the input format, this file is extracted from the zip file, otherwise
this parameter is ignored.

e builds - list of builds from which the data is used. Must include a job name as a key and then a list
of builds and their output files.

The structure of the section “Debug” is as follows (example):

type: "debug”

(continues on next page)

444 Chapter 5. CSIT Framework




CSIT REPORT, Release rls2001

(continued from previous page)

general:
input-format: "zip" # zip or xml
extract: "robot-plugin/output.xml” # Only for zip
builds:
# The files must be in the directory DIR[WORKING,DATA]
csit-dpdk-perf-1707-all:

build: 10
file: "csit-dpdk-perf-1707-all__10.xml"

build: 9

file: "csit-dpdk-perf-1707-all__9.xml"
csit-vpp-functional-1707-ubuntul604-virl:

build: lastSuccessfulBuild

file: "csit-vpp-functional-1707-ubuntu1604-virl-lastSuccessfulBuild.xml"
hc2vpp-csit-integration-1707-ubuntul604:

build: lastSuccessfulBuild

file: "hc2vpp-csit-integration-1707-ubuntul604-lastSuccessfulBuild.xml”
csit-vpp-perf-1707-all:

build: 16

file: "csit-vpp-perf-1707-all__16__output.xml”

build: 17
file: "csit-vpp-perf-1707-all__17__output.xml”

Section: Static

This section defines the static content which is stored in git and will be used as a source to generate the
report.

This section has these parts:
e type: “static” - says that this section is the “static”.
e src-path - path to the static content.

e dst-path - destination path where the static content is copied and then processed.

type: "static”
src-path: " "
dst-path: "

Section: Input

This section defines the data used to generate elements. It is mandatory if the debug mode is not used.
This section has the following parts:
e type: “input” - says that this section is the “input”.
e general - parameters common to all builds:
- file-name: file to be downloaded.

- file-format: format of the downloaded file, “zip” or “xml” are supported.

5.3. Presentation and Analytics 445




CSIT REPORT, Release rls2001

- download-path: path to be added to url pointing to the file, eg.:
“fjob}/{build}/robot/report/zip/{filename}’; {job}, {build} and {filename} are replaced by
proper values defined in this section.

- extract: file to be extracted from downloaded zip file, e.g.: “output.xml”; if xml file is down-
loaded, this parameter is ignored.

e builds - list of jobs (keys) and numbers of builds which output data will be downloaded.

The structure of the section “Input” is as follows (example from 17.07 report):

type: "input” # Ignored in debug mode
general:

file-name: "robot-plugin.zip”
file-format: ".zip"

download-path: " / /robot/report/*zipx/
extract: "robot-plugin/output.xml”
builds:

csit-vpp-perf-1707-all:

-9

- 10

- 13

- 14

- 15

- 16

- 17

- 18

- 19

- 21

- 22

csit-dpdk-perf-1707-all:

-1

|
O N O Ul A~ W N

-9

- 10
csit-vpp-functional-1707-ubuntul1604-virl:
- lastSuccessfulBuild
hc2vpp-csit-perf-master-ubuntul604:

-8

-9
hc2vpp-csit-integration-1707-ubuntu1604:
- lastSuccessfulBuild

Section: Output

This section specifies which format(s) will be generated (html, pdf) and which versions will be generated
for each format.

This section has the following parts:
e type: “output” - says that this section is the “output”.
e format: html or pdf.
e version: defined for each format separately.

The structure of the section “Output” is as follows (example):

446 Chapter 5. CSIT Framework




CSIT REPORT, Release rls2001

type: "output”
format:

html:

- full

pdf:

- full

- minimal

TODO: define the names of versions

Content of “minimal” version

TODO: define the name and content of this version

Section: Table

This section defines a table to be generated. There can be O or more “table” sections.

This section has the following parts:

type: “table” - says that this section defines a table.
title: Title of the table.

algorithm: Algorithm which is used to generate the table. The other parameters in this section must
provide all information needed by the used algorithm.

template: (optional) a .csv file used as a template while generating the table.
output-file-ext: extension of the output file.
output-file: file which the table will be written to.
columns: specification of table columns:
- title: The title used in the table header.
- data: Specification of the data, it has two parts - command and arguments:
* command:
- template - take the data from template, arguments:
- number of column in the template.
- data - take the data from the input data, arguments:
- jobs and builds which data will be used.
- operation - performs an operation with the data already in the table, arguments:

- operation to be done, e.g.: mean, stdeyv, relative_change (compute the relative change
between two columns) and display number of data samples ~= number of test jobs.
The operations are implemented in the utils.py TODO: Move from utils,py to e.g. op-
erations.py

- numbers of columns which data will be used (optional).
data: Specify the jobs and builds which data is used to generate the table.

filter: filter based on tags applied on the input data, if “template” is used, filtering is based on the
template.

parameters: Only these parameters will be put to the output data structure.

The structure of the section “Table” is as follows (example of “table_performance_improvements”):

5.3. Presentation and Analytics 447




CSIT REPORT, Release rls2001

type: "table”
title: "Performance improvements”
algorithm: "table_performance_improvements”

template: "{DIR[DTR,PERF,VPP,IMPRV]}/tmpl_performance_improvements.csv"

n n

output-file-ext: ".csv
output-file: "{DIR[DTR,PERF,VPP,IMPRV]}/performance_improvements”
columns:

title: "VPP Functionality"”

data: "template 1"

title: "Test Name”
data: "template 2"

title: "VPP-16.09 mean [Mpps]”
data: "template 3"

title: "VPP-17.01 mean [Mpps]”
data: "template 4"

title: "VPP-17.04 mean [Mpps]”
data: "template 5"

title: "VPP-17.07 mean [Mpps]”
data: "data csit-vpp-perf-1707-all mean"

title: "VPP-17.07 stdev [Mpps]”
data: "data csit-vpp-perf-1707-all stdev”

title: "17.04 to 17.07 change [%]1"
data: "operation relative_change 5 4"
data:
csit-vpp-perf-1707-all:
-9
- 10
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 21
filter: "template”
parameters:
- "throughput”

Example of “table_details” which generates “Detailed Test Results - VPP Performance Results”:

type: "table”

title: "Detailed Test Results - VPP Performance Results”
algorithm: "table_details”

output-file-ext: ".csv
output-file: "{DIR[WORKING]}/vpp_performance_results”
columns:

n

title: "Name”
data: "data test_name’

1

I

title: "Documentation

(continues on next page)

448

Chapter 5. CSIT Framework




CSIT REPORT, Release rls2001

(continued from previous page)

data: "data test_documentation”

title: "Status”
data: "data test_msg”
data:
csit-vpp-perf-1707-all:
- 17
filter: "all”
parameters:
- "parent”
- "doc"

Example of “table_details” which generates “Test configuration - VPP Performance Test Configs”:

type: "table”

title: "Test configuration - VPP Performance Test Configs”
algorithm: "table_details”

output-file-ext: ".csv
output-file: "
columns:

n

/vpp_test_configuration”

title: "Name”
data: "data name”

title: "VPP API Test (VAT) Commands History - Commands Used Per Test Case”
data: "data show-run”
data:
csit-vpp-perf-1707-all:
- 17
filter: "all”
parameters:
- "parent”
- "name”
- "show-run”

Section: Plot

This section defines a plot to be generated. There can be O or more “plot” sections.
This section has these parts:
o type: “plot” - says that this section defines a plot.
o title: Plot title used in the logs. Title which is displayed is in the section “layout”.
e output-file-type: format of the output file.
e output-file: file which the plot will be written to.

e algorithm: Algorithm used to generate the plot. The other parameters in this section must provide
all information needed by plot.ly to generate the plot. For example:

- traces
- layout
- These parameters are transparently passed to plot.ly.
e data: Specify the jobs and numbers of builds which data is used to generate the plot.

o filter: filter applied on the input data.

5.3. Presentation and Analytics 449




CSIT REPORT, Release rls2001

e parameters: Only these parameters will be put to the output data structure.

The structure of the section “Plot” is as follows (example of a plot showing throughput in a chart box-
with-whiskers):

type: "plot”
title: "VPP Performance 64B-1tl1c-(eth|dotlq|dotTad)-(12xcbase|l2bdbasemaclrn)-ndrdisc”
algorithm: "plot_performance_box"
output-file-type: ".html”

output-file: "{DIR[STATIC,VPP1}/64B-1tT1c-12-sell-ndrdisc”

data:
csit-vpp-perf-1707-all:

9

10
13
14
15
16
17
18
19
21

# Keep this formatting, the filter is enclosed with " (quotation mark) and

# each tag is enclosed with '

(apostrophe).

filter: "'64B' and 'BASE' and 'NDRDISC' and '1T1C' and ('L2BDMACSTAT' or 'L2BDMACLRN' or 'L2XCFWD
—"') and not 'VHOST'"
parameters:
- "throughput”
- "parent”
traces:
hoverinfo: "x+y"
boxpoints: "outliers”
whiskerwidth: 0
layout:
title: "64B-1tl1c-(eth|dotlq|dotlad)-(12xcbase|l2bdbasemaclrn)-ndrdisc”
xaxis:

autorange: True

autotick: False

fixedrange: False

gridcolor: "rgh(238, 238, 238)"
linecolor: "rgh(238, 238, 238)"
linewidth: 1

showgrid: True

showline: True

showticklabels: True

tickcolor: "rgh(238, 238, 238)"
tickmode: "linear”

title: "Indexed Test Cases”
zeroline: False

yaxis:

gridcolor: "rgh(238, 238, 238)"'"
hoverformat: ".4s"

linecolor: "rgh(238, 238, 238)"
linewidth: 1

range: []

showgrid: True

showline: True

showticklabels: True

tickcolor: "rgh(238, 238, 238)"
title: "Packets Per Second [pps]”
zeroline: False

boxmode: "group”

(continues on next page)

450

Chapter 5. CSIT Framework




CSIT REPORT, Release rls2001

(continued from previous page)

boxgroupgap: 0.5
autosize: False
margin:

t: 50

b: 20

1: 50

r: 20
showlegend: True
legend:

orientation: "h"
width: 700
height: 1000

The structure of the section “Plot” is as follows (example of a plot showing latency in a box chart):

type: "plot”
title: "VPP Latency 64B-1tl1c-(eth|dot1qg|dotiad)-(12xcbhase|l2bdbasemaclrn)-ndrdisc”
algorithm: "plot_latency_box"
output-file-type: ".html”
output-file: "{DIR[STATIC,VPP]1}/64B-1t1c-12-sel1-ndrdisc-1at50"
data:
csit-vpp-perf-1707-all:
-9
- 10
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 21
filter: "'64B' and 'BASE' and 'NDRDISC' and '1T1C' and ('L2BDMACSTAT' or 'L2BDMACLRN' or 'L2XCFWD
—"') and not 'VHOST'"
parameters:
- "latency”
- "parent”
traces:
boxmean: False
layout:
title: "64B-1tl1c-(eth|dotlq|dotlad)-(12xcbase|l2bdbasemaclrn)-ndrdisc”
xaxis:
autorange: True
autotick: False
fixedrange: False
gridcolor: "rgh(238, 238, 238)"
linecolor: "rgh(238, 238, 238)"
linewidth: 1
showgrid: True
showline: True
showticklabels: True
tickcolor: "rgh(238, 238, 238)"
tickmode: "linear”
title: "Indexed Test Cases”
zeroline: False
yaxis:
gridcolor: "rgh(238, 238, 238)"'"
hoverformat: ""
linecolor: "rgh(238, 238, 238)"
linewidth: 1

(continues on next page)

5.3. Presentation and Analytics 451




CSIT REPORT, Release rls2001

(continued from previous page)

range: []
showgrid: True
showline: True
showticklabels: True
tickcolor: "rgh(238, 238, 238)"
title: "Latency min/avg/max [uSec]”
zeroline: False
boxmode: "group”
boxgroupgap: 0.5
autosize: False
margin:
t: 50
b: 20
1: 50
r: 20
showlegend: True
legend:
orientation: "h"
width: 700
height: 1000

The structure of the section “Plot” is as follows (example of a plot showing VPP HTTP server performance
in a box chart with pre-defined data “plot-vpp-httlp-server-performance” set and plot layout “plot-cps”):

type: "plot”
title: "VPP HTTP Server Performance”
algorithm: "plot_http_server_perf_box"
output-file-type: ".html”
output-file: "
data:
"plot-vpp-httlp-server-performance”
# Keep this formatting, the filter is enclosed with " (quotation mark) and
# each tag is enclosed with ' (apostrophe).
filter: "'HTTP' and 'TCP_CPS"'"
parameters:
- "result”
- "name”
traces:
hoverinfo: "x+y"
boxpoints: "outliers”
whiskerwidth: 0
layout:
title: "VPP HTTP Server Performance”
layout:
"plot-cps”

/http-server-performance-cps”

Section: file

This section defines a file to be generated. There can be O or more “file” sections.
This section has the following parts:

e type: “file” - says that this section defines a file.

o title: Title of the table.

e algorithm: Algorithm which is used to generate the file. The other parameters in this section must
provide all information needed by the used algorithm.

e output-file-ext: extension of the output file.

452 Chapter 5. CSIT Framework




CSIT REPORT, Release rls2001

e output-file: file which the file will be written to.

o file-header: The header of the generated .rst file.

e dir-tables: The directory with the tables.

e data: Specify the jobs and builds which data is used to generate the table.

o filter: filter based on tags applied on the input data, if “all” is used, no filtering is done.
e parameters: Only these parameters will be put to the output data structure.

e chapters: the hierarchy of chapters in the generated file.

o start-level: the level of the the top-level chapter.

The structure of the section “file” is as follows (example):

type: "file”
title: "VPP Performance Results”
algorithm: "file_test_results”
output-file-ext: ".rst”
output-file: " /vpp_performance_results”
file-header: "\n.. |br| raw:: html\n\n <br />\n\n\n.. |prein| raw:: html\n\n <pre>\n\n\n.._
— |preout| raw:: html\n\n </pre>\n\n"
dir-tables: " "
data:
csit-vpp-perf-1707-all:
- 22
filter: "all”
parameters:
- "name"
- "doc”
- "level”
data-start-level: 2 # 0, 1, 2, ...
chapters-start-level: 2 # 0, 1, 2, ...

Static content

e Manually created / edited files.
o .rst files, static .csv files, static pictures (.svg), ...
e Stored in CSIT git repository.

No more details about the static content in this document.

Data to process

The PAL processes tests results and other information produced by Jenkins jobs. The data are now stored
as robot results in Jenkins (TODO: store the data in nexus) either as .zip and / or .xml files.

5.3.3 Data processing
As the first step, the data are downloaded and stored locally (typically on a Jenkins slave). If .zip files are
used, the given .xml files are extracted for further processing.

Parsing of the .xml files is performed by a class derived from “robot.api.ResultVisitor”, only necessary
methods are overridden. All and only necessary data is extracted from .xml file and stored in a structured
form.

The parsed data are stored as the multi-indexed pandas.Series data type. Its structure is as follows:

5.3. Presentation and Analytics 453




CSIT REPORT, Release rls2001

<job name>
<build>
<metadata>
<suites>
<tests>

» o« » o«

“job name”, “build”, “metadata”, “suites”, “tests” are indexes to access the data. For example:

data =

job 1 name:
build 1:
metadata: metadata
suites: suites
tests: tests

build N:
metadata: metadata
suites: suites
tests: tests

job M name:
build 1:
metadata: metadata
suites: suites
tests: tests

build N:
metadata: metadata
suites: suites
tests: tests

Using indexes data[“job 1 name”][“build 1"][“tests"] (e.g.: data[“csit-vpp-perf-1704-all"][“17"][“tests"]) we
get a list of all tests with all tests data.

Data will not be accessible directly using indexes, but using getters and filters.

Structure of metadata:

"metadata”: {
"version”: "VPP version”,
"job": "Jenkins job name”

"pbuild”: "Information about the build”
}’

Structure of suites:

"suites": {
"Suite name 1": {

"doc"”: "Suite 1 documentation”
"parent”: "Suite 1 parent”

3

"Suite name N": {
"doc": "Suite N documentation”
"parent”: "Suite N parent”

3

Structure of tests:

Performance tests:

"tests": {
"ID": |

(continues on next page)

454 Chapter 5. CSIT Framework




CSIT REPORT, Release rls2001

(continued from previous page)

"name”: "Test name”,
"parent”: "Name of the parent of the test”,
"doc"”: "Test documentation”

n n

msg": "Test message”
"tags”: ["tag 1", "tag 2", "tag n"I1,
"type”: "PDR” | "NDR”,

"throughput”: {
"value": int,

"unit”: "pps” | "bps” | "percentage”
}I
"latency”: {
"direction1”: {
"100": {
"min”: int,
"avg": int,
"max": int
b
"50": { # Only for NDR
"min”: int,
"avg": int,
"max”: int
h
"10": { # Only for NDR
"min": int,
"avg"”: int,
"max": int
3
b
"direction2": {
"100": {
"min": int,
"avg": int,
"max”: int
b
"50": { # Only for NDR
"min": int,
"avg”: int,
"max": int
3
"10": { # Only for NDR
"min": int,
"avg": int,
"max”: int
}
3
1
"lossTolerance"”: "lossTolerance” # Only for PDR

"vat-history”: "DUT1 and DUT2 VAT History"

})

"show-run”: "Show Run”
}’
HIDN {

# next test
3

Functional tests:

"tests": {
HIDN: {
"name"”: "Test name”,
"parent”: "Name of the parent of the test”,

(continues on next page)

5.3. Presentation and Analytics

455




CSIT REPORT, Release rls2001

(continued from previous page)

"doc”: "Test documentation”

"msg": "Test message”

"tags”: ["tag 1", "tag 2", "tag n"]1,
"vat-history”: "DUT1 and DUT2 VAT History"

"show-run”: "Show Run”
"status”: "PASS" | "FAIL"
1,
"ID" {
# next test
3

}

Note: ID is the lowercase full path to the test.

Data filtering
The first step when generating an element is getting the data needed to construct the element. The data
are filtered from the processed input data.
The data filtering is based on:
e job name(s).
e build number(s).
o tag(s).
e required data - only this data is included in the output.
WARNING: The filtering is based on tags, so be careful with tagging.

For example, the element which specification includes:

data:
csit-vpp-perf-1707-all:
-9
- 10
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 21
filter:
- "'64B' and 'BASE' and 'NDRDISC' and '1T1C' and ('L2BDMACSTAT' or 'L2BDMACLRN' or 'L2XCFWD') and.
—not 'VHOST'"

will be constructed using data from the job “csit-vpp-perf-1707-all”, for all listed builds and the tests with
the list of tags matching the filter conditions.

The output data structure for filtered test data is:

- job 1
- build 1
- test 1
- parameter 1
- parameter 2

- parameter n

- test n

(continues on next page)

456 Chapter 5. CSIT Framework




CSIT REPORT, Release rls2001

(continued from previous page)

- build n

- job n

Data analytics

Data analytics part implements:
e methods to compute statistical data from the filtered input data.

e trending.

Throughput Speedup Analysis - Multi-Core with Multi-Threading

Throughput Speedup Analysis (TSA) calculates throughput speedup ratios for tested 1-, 2- and 4-core
multi-threaded VPP configurations using the following formula:

N_core_throughput
N_core_throughput_speedup = ———-------=---—-—-
1_core_throughput

Multi-core throughput speedup ratios are plotted in grouped bar graphs for throughput tests with
64B/78B frame size, with number of cores on X-axis and speedup ratio on Y-axis.

For better comparison multiple test results’ data sets are plotted per each graph:
e graph type: grouped bars;
e graph X-axis: (testcase index, number of cores);
e graph Y-axis: speedup factor.

Subset of existing performance tests is covered by TSA graphs.

Model for TSA:

type: "plot”
title: "TSA: 64B-*-(eth|dot1qg|dotlad)-(12xchase|l2bdbasemaclrn)-ndrdisc”
algorithm: "plot_throughput_speedup_analysis”
output-file-type: ".html”
output-file: " /10ge2p1x520-64B-12-tsa-ndrdisc”
data:
"plot-throughput-speedup-analysis”
filter: "'NIC_Intel-X520-DA2' and '64B' and 'BASE' and 'NDRDISC' and ('L2BDMACSTAT' or 'L2BDMACLRN
— "' or 'L2XCFWD') and not 'VHOST'"
parameters:
- "throughput”
- "parent”
- "tags"
layout:
title: "64B-*-(eth|dotl1qg|dotiad)-(12xchase|l2bdbasemaclrn)-ndrdisc”
layout:
"plot-throughput-speedup-analysis”

5.3. Presentation and Analytics 457




CSIT REPORT, Release rls2001

Comparison of results from two sets of the same test executions

This algorithm enables comparison of results coming from two sets of the same test executions. It is used
to quantify performance changes across all tests after test environment changes e.g. Operating System
upgrades/patches, Hardware changes.

It is assumed that each set of test executions includes multiple runs of the same tests, 10 or more, to
verify test results repeatibility and to yield statistically meaningful results data.

Comparison results are presented in a table with a specified number of the best and the worst relative
changes between the two sets. Following table columns are defined:

e name of the test;

throughput mean values of the reference set;

throughput standard deviation of the reference set;

throughput mean values of the set to compare;

throughput standard deviation of the set to compare;
e relative change of the mean values.

The model

The model specifies:
e type: “table” - means this section defines a table.
o title: Title of the table.

e algorithm: Algorithm which is used to generate the table. The other parameters in this section must
provide all information needed by the used algorithm.

e output-file-ext: Extension of the output file.

e output-file: File which the table will be written to.

o reference - the builds which are used as the reference for comparison.

e compare - the builds which are compared to the reference.

e data: Specify the sources, jobs and builds, providing data for generating the table.

o filter: Filter based on tags applied on the input data, if “template” is used, filtering is based on the
template.

e parameters: Only these parameters will be put to the output data structure.

e nr-of-tests-shown: Number of the best and the worst tests presented in the table. Use O (zero) to
present all tests.

Example:

type: "table”
title: "Performance comparison”
algorithm: "table_perf_comparison”

output-file-ext: ".csv”
output-file: " /vpp_performance_comparison”
reference:

title: "csit-vpp-perf-1801-all - 1"

data:

csit-vpp-perf-1801-all:
-1
-2
compare:
title: "csit-vpp-perf-1801-all - 2"

(continues on next page)

458 Chapter 5. CSIT Framework




CSIT REPORT, Release rls2001

(continued from previous page)

data:
csit-vpp-perf-1801-all:
-1
-2
data:
"vpp-perf-comparison”
filter: "all”
parameters:
- "name"”
- "parent”
- "throughput”
nr-of-tests-shown: 20

Advanced data analytics
In the future advanced data analytics (ADA) will be added to analyze the telemetry data collected from
SUT telemetry sources and correlate it to performance test results.
TODO
e describe the concept of ADA.

e add specification.

5.3.4 Data presentation

Generates the plots and tables according to the report models per specification file. The elements are
generated using algorithms and data specified in their models.

Tables
e tables are generated by algorithms implemented in PAL, the model includes the algorithm and all
necessary information.
e output format: csv

e generated tables are stored in specified directories and linked to .rst files.

Plots

o plot.ly'0 is currently used to generate plots, the model includes the type of plot and all the neces-

sary information to render it.
e output format: html.

e generated plots are stored in specified directories and linked to .rst files.

5.3.5 Report generation

Report is generated using Sphinx and Read_the_Docs template. PAL generates html and pdf formats. It
is possible to define the content of the report by specifying the version (TODO: define the names and
content of versions).

180 https://plot.ly/

5.3. Presentation and Analytics 459



https://plot.ly/

CSIT REPORT, Release rls2001

The

A WO N P

5.
6.

The

process

. Read the specification.

. Read the input data.

. Process the input data.

. For element (plot, table, file) defined in specification:
a. Get the data needed to construct the element using a filter.
b. Generate the element.
c. Store the element.

Generate the report.

Store the report (Nexus).

process is model driven. The elements’ models (tables, plots, files and report itself) are defined in the

specification file. Script reads the elements’ models from specification file and generates the elements.

It is

easy to add elements to be generated in the report. If a new type of an element is required, only a

new algorithm needs to be implemented and integrated.

5.3.6 Continuous Performance Measurements and Trending

Performance analysis and trending execution sequence:

CSIT PA runs performance analysis, change detection and trending using specified trend analysis metrics
over the rolling window of last <N> sets of historical measurement data. PA is defined as follows:

1. PAjob triggers:
1. By PT job at its completion.
2. Manually from Jenkins Ul.
2. Download and parse archived historical data and the new data:
1. New data from latest PT job is evaluated against the rolling window of <N> sets of historical
data.
2. Download RF output.xml files and compressed archived data.
3. Pia\r)se out the data filtering test cases listed in PA specification (part of CSIT PAL specification
file).
3. Calculate trend metrics for the rolling window of <N> sets of historical data:
1. Calculate quartiles Q1, Q2, Q3.
2. Trim outliers using IQR.
3. Calculate TMA and TMSD.
4. Calculate normal trending range per test case based on TMA and TMSD.
4. Evaluate new test data against trend metrics:
1. If within the range of (TMA +/- 3*TMSD) => Result = Pass, Reason = Normal.
2. If below the range => Result = Fail, Reason = Regression.
3. If above the range => Result = Pass, Reason = Progression.
5. Generate and publish results
1. Relay evaluation result to job result.
460 Chapter 5. CSIT Framework



CSIT REPORT, Release rls2001

2. Generate a new set of trend analysis summary graphs and drill-down graphs.

1. Summary graphs to include measured values with Normal, Progression and Regression

markers. MM shown in the background if possible.
2. Drill-down graphs to include MM, TMA and TMSD.
3. Publish trend analysis graphs in html format on https:/docs.fd.io/csit/master/trending/.

Parameters to specify:

General section - parameters common to all plots:

e type: “cpta”;

o title: The title of this section;

e output-file-type: only “html” is supported;

e output-file: path where the generated files will be stored.
Plots section:

e plot title;

output file name;

input data for plots;

- job to be monitored - the Jenkins job which results are used as input data for this test;

- builds used for trending plot(s) - specified by a list of build numbers or by a range of builds

defined by the first and the last build number;

tests to be displayed in the plot defined by a filter;

list of parameters to extract from the data;
e plot layout

Example:

type: "cpta”

title: "Continuous Performance Trending and Analysis”
output-file-type: ".html”
output-file: "

plots:

/cpta”

- title: "VPP 1T1C L2 64B Packet Throughput - Trending”

output-file-name: "12-1t1c-x520"

data: "plot-performance-trending-vpp”

filter: "'NIC_Intel-X520-DA2' and 'MRR' and '64B' and ('BASE' or 'SCALE') and '1T1C' and (
— 'L2BDMACSTAT' or 'L2BDMACLRN' or 'L2XCFWD') and not 'VHOST' and not 'MEMIF'”

parameters:

- "result”

layout: "plot-cpta-vpp”

- title: "DPDK 4T4C IMIX MRR Trending”
output-file-name: "dpdk-imix-4t4c-x1710"
data: "plot-performance-trending-dpdk”
filter: "'NIC_Intel-XL710' and 'IMIX' and 'MRR' and '4T4C' and 'DPDK""
parameters:
- "result”
layout: "plot-cpta-dpdk”

5.3. Presentation and Analytics


https://docs.fd.io/csit/master/trending/

CSIT REPORT, Release rls2001

The Dashboard

Performance dashboard tables provide the latest VPP throughput trend, trend compliance and detected
anomalies, all on a per VPP test case basis. The Dashboard is generated as three tables for 1tlc, 2t2c and
4t4c MRR tests.

At first, the .csv tables are generated (only the table for 1t1c is shown):

type: "table”

title: "Performance trending dashboard”

algorithm: "table_perf_trending_dash”

output-file-ext: ".csv”

output-file: " /performance-trending-dashboard-1t1c”
data: "plot-performance-trending-all”

filter: "'MRR' and "'1T1C"'"

parameters:

- "name”

- "parent”

- "result”

ignore-list:

- "tests.vpp.perf.12.10ge2p1x520-eth-12bdscalelmmaclrn-mrr.tc@1-64b-1t1c-eth-12bdscaleImmaclrn-

—ndrdisc”

outlier-const: 1.5
window: 14
evaluated-window: 14
long-trend-window: 180

Then, html tables stored inside .rst files are generated:

type: "table”

title: "HTML performance trending dashboard 1t1c”

algorithm: "table_perf_trending_dash_html”

input-file: " /performance-trending-dashboard-1tic.csv”
output-file: /performance-trending-dashboard-1tic.rst”

n

5.3.7 Root Cause Analysis

Root Cause Analysis (RCA) by analysing archived performance results - re-analyse available data for spec-
ified:

¢ range of jobs builds,
e set of specific tests and

e PASS/FAIL criteria to detect performance change.

In addition, PAL generates trending plots to show performance over the specified time interval.

Root Cause Analysis - Option 1: Analysing Archived VPP Results

It can be used to speed-up the process, or when the existing data is sufficient. In this case, PAL uses
existing data saved in Nexus, searches for performance degradations and generates plots to show per-
formance over the specified time interval for the selected tests.

Execution Sequence

1. Download and parse archived historical data and the new data.

2. Calculate trend metrics.

462 Chapter 5. CSIT Framework




CSIT REPORT, Release rls2001

3. Find regression / progression.

4. Generate and publish results:

1. Summary graphs to include measured values with Progression and Regression markers.

2. List the DUT build(s) where the anomalies were detected.

CSIT PAL Specification

e \What to test:

- first build (Good); specified by the Jenkins job name and the build number

- last build (Bad); specified by the Jenkins job name and the build number

- step (1..n).
e Data:

- tests of interest; list of tests (full name is used) which results are used

Example:

TODO

5.3.8 API

List of modules, classes, methods and functions

specification_parser.py
class Specification

Methods:
read_specification
set_input_state
set_input_file_name

Getters:
specification
environment
debug
is_debug
input
builds
output
tables
plots
files
static

input_data_parser.py
class InputData
Methods:
read_data

filter_data

Getters:

(continues on next page)

5.3. Presentation and Analytics

463




CSIT REPORT, Release rls2001

(continued from previous page)

data
metadata
suites
tests

environment.py

Functions:
clean_environment

class Environment

Methods:
set_environment

Getters:
environment

input_data_files.py

Functions:
download_data_files
unzip_files

generator_tables.py

Functions:
generate_tables

Functions implementing algorithms to generate particular types of
tables (called by the function "generate_tables”):

table_details

table_performance_improvements

generator_plots.py

Functions:
generate_plots

Functions implementing algorithms to generate particular types of
plots (called by the function "generate_plots"”):
plot_performance_box
plot_latency_box

generator_files.py

Functions:
generate_files

Functions implementing algorithms to generate particular types of

files (called by the function "generate_files”):
file_test_results

report.py

(continues on next page)

464 Chapter 5. CSIT Framework




CSIT REPORT, Release rls2001

(continued from previous page)

Functions:
generate_report

Functions implementing algorithms to generate particular types of
report (called by the function "generate_report”):
generate_html_report
generate_pdf_report

Other functions called by the function "generate_report”:
archive_input_data
archive_report

5.3. Presentation and Analytics 465




CSIT REPORT, Release rls2001

PAL functional diagram

sL1 - Data

sL? - Data
processing

filter_data

generate_tables

generate_plots

generate_files

sL3 - Data
presentation

generate_report

sL4 - Report
generation

How to add an element

Element can be added by adding it's model to the specification file. If the element is to be generated by
an existing algorithm, only it's parameters must be set.

If a brand new type of element needs to be added, also the algorithm must be implemented. Element
generation algorithms are implemented in the files with names starting with “generator” prefix. The name
of the function implementing the algorithm and the name of algorithm in the specification file have to be
the same.

466 Chapter 5. CSIT Framework



CSIT REPORT, Release rls2001

5.4 CSIT RF Tags Descriptions

All CSIT test cases are labelled with Robot Framework tags used to allow for easy test case type identi-
fication, test case grouping and selection for execution. Following sections list currently used CSIT TAGs
and their documentation based on the content of tag documentation rst file81,

5.4.1 Testbed Topology Tags

2_NODE_DOUBLE_LINK_TOPO

2 nodes connected in a circular topology with two links interconnecting the devices.
2_NODE_SINGLE_LINK_TOPO

2 nodes connected in a circular topology with at least one link interconnecting devices.
3_NODE_DOUBLE_LINK_TOPO

3 nodes connected in a circular topology with two links interconnecting the devices.

3_NODE_SINGLE_LINK_TOPO

3 nodes connected in a circular topology with at least one link interconnecting devices.

5.4.2 Objective Tags

SKIP_PATCH

Test case(s) marked to not run in case of vpp-csit-verify (i.e. VPP patch) and csit-vpp-verify jobs (i.e. CSIT
patch).

SKIP_VPP_PATCH

Test case(s) marked to not run in case of vpp-csit-verify (i.e. VPP patch).

5.4.3 Environment Tags

HW_ENV

DUTs and TGs are running on bare metal.

VM_ENV

DUTs and TGs are running in virtual environment.

VPP_VM_ENV

DUTs with VPP and capable of running Virtual Machine.

181 https:/git.fd.io/csit/tree/docs/tag_documentation.rst?h=rls2001

5.4. CSIT RF Tags Descriptions 467


https://git.fd.io/csit/tree/docs/tag_documentation.rst?h=rls2001

CSIT REPORT, Release rls2001

5.4.4 NIC Model Tags

NIC_Intel-X520-DA2

Intel X520-DA2 NIC.

NIC_Intel-XL710

Intel XL710 NIC.

NIC_Intel-X710

Intel X710 NIC.

NIC_Intel-XXV710

Intel XXV710 NIC.
NIC_Cisco-VIC-1227

VIC-1227 by Cisco.

NIC_Cisco-VIC-1385

VIC-1385 by Cisco.

5.4.5 Scaling Tags

FIB_20K

2x10,000 entries in single fib table

FIB_200K

2x100,000 entries in single fib table

FIB_2M

2x1,000,000 entries in single fib table

L2BD_1

Test with 1 L2 bridge domain.

L2BD_10

Test with 10 L2 bridge domains.

L2BD_100

Test with 100 L2 bridge domains.

468

Chapter 5. CSIT Framework



CSIT REPORT, Release rls2001

L2BD_1K

Test with 1000 L2 bridge domains.
VLAN_1

Test with 1 VLAN sub-interface.
VLAN_10

Test with 10 VLAN sub-interfaces.
VLAN_100

Test with 100 VLAN sub-interfaces.

VLAN_1K

Test with 1000 VLAN sub-interfaces.

VXLAN_1

Test with 1 VXLAN tunnel.

VXLAN_10

Test with 10 VXLAN tunnels.

VXLAN_100

Test with 100 VXLAN tunnels.

VXLAN_1K

Test with 1000 VXLAN tunnels.
TNL_{t}

IPSec in tunnel mode - {t} tunnels.

SRC_USER_1

Traffic flow with 1 unique IP (users) in one direction.

SRC_USER_10

Traffic flow with 10 unique IPs (users) in one direction.

SRC_USER_100

Traffic flow with 100 unique IPs (users) in one direction.

SRC_USER_1000

Traffic flow with 1000 unique IPs (users) in one direction.

5.4. CSIT RF Tags Descriptions

469



CSIT REPORT, Release rls2001

SRC_USER_2000

Traffic flow with 2000 unique IPs (users) in one direction.

SRC_USER_4000

Traffic flow with 4000 unique IPs (users) in one direction.

100_FLOWS

Traffic stream with 100 unique flows (10 IPs/users x 10 UDP ports) in one direction.
10k_FLOWS

Traffic stream with 10 000 unique flows (10 IPs/users x 1000 UDP ports) in one direction.
100k_FLOWS

Traffic stream with 100 000 unique flows (100 IPs/users x 1000 UDP ports) in one direction.

5.4.6 Test Category Tags

FUNCTEST
All functional test cases.
PERFTEST

All performance test cases.

5.4.7 Performance Type Tags

NDRPDR
Single test finding both No Drop Rate and Partial Drop Rate simultaneously. The search is done by opti-

mized algorithm which performs multiple trial runs at different durations and transmit rates. The results
come from the final trials, which have duration of 30 seconds.

MRR

Performance tests where TG sends the traffic at maximum rate (line rate) and reports total sent/received
packets over trial duration. The result is an average of 10 trials of 1 second duration.

SOAK
Performance tests using PLRsearch to find the critical load.

RECONF

Performance tests aimed to measure lost packets (time) when performing reconfiguration while full
throughput offered load is applied.

470 Chapter 5. CSIT Framework



CSIT REPORT, Release rls2001

5.4.8 Ethernet Frame Size Tags

These are describing the traffic offered by Traffic Generator, “primary” traffic in case of asymmetric load.
For traffic between DUTs, or for “secondary” traffic, see ${overhead} value.

64B

64B frames used for test. Generic ethernet or IPv4.
78B

78B frames used for test. Ipvé.

114B

114B frames used for test. IPv4+vxlan.

118B

118B frames used for test. Dot1q+IPv4+vxlan.
IMIX

IMIX frame sequence (28x 64B, 16x 570B, 4x 1518B) used for test.
1460B

1460B frames used for test.

1480B

1480B frames used for test.

1514B

1514B frames used for test.

1518B

1518B frames used for test.

9000B

9000B frames used for test.

5.4.9 Test Type Tags

BASE

Baseline test cases, no encapsulation, no feature(s) configured in tests.

IPABASE

IPv4 baseline test cases, no encapsulation, no feature(s) configured in tests.

5.4. CSIT RF Tags Descriptions 471



CSIT REPORT, Release rls2001

IP6BASE

IPv6 baseline test cases, no encapsulation, no feature(s) configured in tests.

L2XCBASE

L2XC baseline test cases, no encapsulation, no feature(s) configured in tests.

L2BDBASE

L2BD baseline test cases, no encapsulation, no feature(s) configured in tests.

L2PATCH

L2PATCH baseline test cases, no encapsulation, no feature(s) configured in tests.
SCALE

Scale test cases.

ENCAP

Test cases where encapsulation is used. Use also encapsulation tag(s).
FEATURE

At least one feature is configured in test cases. Use also feature tag(s).
TCP

Tests which use TCP.

TCP_CPS

Performance tests which measure connections per second using http requests.

TCP_RPS

Performance tests which measure requests per second using http requests.
HTTP

Tests which use HTTP.

NF_DENSITY

Performance tests that measure throughput of multiple VNF and CNF service topologies at different
service densities.

5.4.10 NF Service Density Tags

CHAIN

NF service density tests with VNF or CNF service chain topology(ies).

472 Chapter 5. CSIT Framework



CSIT REPORT, Release rls2001

PIPE

NF service density tests with CNF service pipeline topology(ies).
NF_L3FWDIP4

NF service density tests with DPDK I3fwd IPv4 routing as NF workload.
NF_VPPIP4

NF service density tests with VPP IPv4 routing as NF workload.
{rIR{c}C

Service density matrix locator {r}R{c}C, {rIRow denoting number of service instances, {c}Column denoting
number of NFs per service instance. {r}=(1,2,4,6,8,10), {c}=(1,2,4,6,8,10).

{nVM{tIT

Service density {nNVM{t]T, {n}Number of NF Qemu VMs, {t}]Number of threads per NF.
{n]DCRt}T

Service density {n}DCR{t]T, {n}Number of NF Docker containers, {t{Number of threads per NF.

{n}_ADDED_CHAINS

{n}INumber of chains (or pipelines) added (and/or removed) during RECONF test.

5.4.11 Forwarding Mode Tags

L2BDMACSTAT

VPP L2 bridge-domain, L2 MAC static.

L2BDMACLRN

VPP L2 bridge-domain, L2 MAC learning.

L2XCFWD

VPP L2 point-to-point cross-connect.
IPAFWD

VPP IPv4 routed forwarding.

IP6FWD

VPP IPvé6 routed forwarding.

5.4. CSIT RF Tags Descriptions 473



CSIT REPORT, Release rls2001

LOADBALANCER_MAGLEV

VPP Load balancer maglev mode.

LOADBALANCER_L3DSR

VPP Load balancer 13dsr mode.

LOADBALANCER_NAT4

VPP Load balancer nat4 mode.

5.4.12 Underlay Tags

IPAUNRLAY

IPv4 underlay.

IP6UNRLAY

IPv6 underlay.

MPLSUNRLAY

MPLS underlay.

5.4.13 Overlay Tags

L2OVRLAY

L2 overlay.

IPAOVRLAY

IPv4 overlay (IPv4 payload).

IP6OVRLAY

IPvé6 overlay (IPvé payload).

5.4.14 Tagging Tags

DOT1Q

All test cases with dot1q.

DOT1AD

All test cases with dotlad.

474

Chapter 5. CSIT Framework



CSIT REPORT, Release rls2001

5.4.15 Encapsulation Tags

ETH

All test cases with base Ethernet (no encapsulation).
LISP

All test cases with LISP.

LISPGPE

All test cases with LISP-GPE.
LISP_IP404

All test cases with LISP_IP404.
LISPGPE_IP404

All test cases with LISPGPE_IP404.
LISPGPE_IP604

All test cases with LISPGPE_IP604.
LISPGPE_IP406

All test cases with LISPGPE_IP406.
LISPGPE_IP606

All test cases with LISPGPE_IP606.
VXLAN

All test cases with Vxlan.
VXLANGPE

All test cases with VXLAN-GPE.
GRE

All test cases with GRE.

IPSEC

All test cases with IPSEC.

SRvé

All test cases with Segment routing over IPv6 dataplane.

5.4. CSIT RF Tags Descriptions 475



CSIT REPORT, Release rls2001

SRvé6_1SID

All SRv6 test cases with single SID.

SRvé6_2SID_DECAP

All SRv6 test cases with two SIDs and with decapsulation.

SRvé6_2SID_NODECAP

All SRv6 test cases with two SIDs and without decapsulation.

5.4.16 Interface Tags

PHY

All test cases which use physical interface(s).

VHOST

All test cases which uses VHOST.

VHOST_256

All test cases which uses VHOST with gemu queue size set to 256.
VHOST_1024

All test cases which uses VHOST with gemu queue size set to 1024.
CFS_OPT

All test cases which uses VM with optimised scheduler policy.
TUNTAP

All test cases which uses TUN and TAP.

AFPKT

All test cases which uses AFPKT.

NETMAP

All test cases which uses Netmap.

MEMIF

All test cases which uses Memif.

SINGLE_MEMIF

All test cases which uses only single Memif connection per DUT. One DUT instance is running in container
having one physical interface exposed to container.

476 Chapter 5. CSIT Framework



CSIT REPORT, Release rls2001

LBOND

All test cases which uses link bonding (BondEthernet interface).

LBOND_DPDK

All test cases which uses DPDK link bonding.
LBOND_VPP

All test cases which uses VPP link bonding.
LBOND_MODE_XOR

All test cases which uses link bonding with mode XOR.
LBOND_MODE_LACP

All test cases which uses link bonding with mode LACP.
LBOND_LB_L34

All test cases which uses link bonding with load-balance mode 134.
LBOND_1L

All test cases which uses one link for link bonding.
LBOND_2L

All test cases which uses two links for link bonding.

DRV_AVF

All test cases which uses Intel Adaptive Virtual Function (AVF) device plugin for VPP. This plugins provides
native device support for Intel AVF. AVF is driver specification for current and future Intel Virtual Function
devices. In essence, today this driver can be used only with Intel XL710 / X710 / XXV710 adapters.

DRV_VFIO_PCI

All test cases which uses vfio-pci device driver. It supports variety of NIC adapters.

DRV_RDMA_CORE

All test cases which uses rdma-core device driver. It supports Mellanox NIC adapters.

5.4.17 Feature Tags

IACLDST

iACL destination.

5.4. CSIT RF Tags Descriptions 477



CSIT REPORT, Release rls2001

COPWHLIST

COP whitelist.

NAT44

NAT44 configured and tested.

NAT64

NAT44 configured and tested.

ACL

ACL plugin configured and tested.

IACL

ACL plugin configured and tested on input path.
OACL

ACL plugin configured and tested on output path.

ACL_STATELESS

ACL plugin configured and tested in stateless mode (permit action).

ACL_STATEFUL

ACL plugin configured and tested in stateful mode (permit+reflect action).

ACL1

ACL plugin configured and tested with 1 not-hitting ACE.
ACL10

ACL plugin configured and tested with 10 not-hitting ACEs.
ACL50

ACL plugin configured and tested with 50 not-hitting ACEs.
SRv6_PROXY

SRvé endpoint to SR-unaware appliance via proxy.

SRv6_PROXY_STAT

SRvé6 endpoint to SR-unaware appliance via static proxy.

SRvé6_PROXY_DYN

SRvé endpoint to SR-unaware appliance via dynamic proxy.

478

Chapter 5. CSIT Framework



CSIT REPORT, Release rls2001

SRv6_PROXY_MASQ

SRvé endpoint to SR-unaware appliance via masquerading proxy.

5.4.18 Encryption Tags

IPSECSW

Crypto in software.
IPSECHW

Crypto in hardware.
IPSECTRAN

IPSec in transport mode.
IPSECTUN

IPSec in tunnel mode.

IPSECINT

IPSec in interface mode.

AES

IPSec using AES algorithms.
AES_128_CBC

IPSec using AES 128 CBC algorithms.

AES_128_GCM

IPSec using AES 128 GCM algorithms.

AES_256_GCM

IPSec using AES 256 GCM algorithms.

HMAC
IPSec using HMAC integrity algorithms.
HMAC_SHA_256

IPSec using HMAC SHA 256 integrity algorithms.

HMAC_SHA_512

IPSec using HMAC SHA 512 integrity algorithms.

5.4. CSIT RF Tags Descriptions 479



CSIT REPORT, Release rls2001

5.4.19 Client-Workload Tags

VM

All test cases which use at least one virtual machine.
LXC

All test cases which use Linux container and LXC utils.
DRC

All test cases which use at least one Docker container.
DOCKER

All test cases which use Docker as container manager.

APP

All test cases with specific APP use.

5.4.20 Container Orchestration Tags

1VSWITCH

VPP running in Docker container acting as VSWITCH.

1VNF

1 VPP running in Docker container acting as VNF work load.

2VNF

2 VPP running in 2 Docker containers acting as VNF work load.

4VNF

4 VPP running in 4 Docker containers acting as VNF work load.

5.4.21 Multi-Threading Tags

STHREAD

Dynamic tag. All test cases using single poll mode thread.

MTHREAD

Dynamic tag. All test cases using more then one poll mode driver thread.

480

Chapter 5. CSIT Framework



CSIT REPORT, Release rls2001

1INUMA

All test cases with packet processing on single socket.
2NUMA

All test cases with packet processing on two sockets.

1C

1 worker thread pinned to 1 dedicated physical core; or if HyperThreading is enabled, 2 worker threads
each pinned to a separate logical core within 1 dedicated physical core. Main thread pinned to core 1.

2C

2 worker threads pinned to 2 dedicated physical cores; or if HyperThreading is enabled, 4 worker threads
each pinned to a separate logical core within 2 dedicated physical cores. Main thread pinned to core 1.

ac

4 worker threads pinned to 4 dedicated physical cores; or if HyperThreading is enabled, 8 worker threads
each pinned to a separate logical core within 4 dedicated physical cores. Main thread pinned to core 1.

1T1C

Dynamic tag. 1 worker thread pinned to 1 dedicated physical core. 1 receive queue per interface. Main
thread pinned to core 1.

2T2C

Dynamic tag. 2 worker threads pinned to 2 dedicated physical cores. 1 receive queue per interface. Main
thread pinned to core 1.

4T4C

Dynamic tag. 4 worker threads pinned to 4 dedicated physical cores. 2 receive queues per interface.
Main thread pinned to core 1.

2T1C

Dynamic tag. 2 worker threads each pinned to a separate logical core within 1 dedicated physical core.
1 receive queue per interface. Main thread pinned to core 1.

4T12C

Dynamic tag. 4 worker threads each pinned to a separate logical core within 2 dedicated physical cores.
2 receive queues per interface. Main thread pinned to core 1.

8T4C

Dynamic tag. 8 worker threads each pinned to a separate logical core within 4 dedicated physical cores.
4 receive queues per interface. Main thread pinned to core 1.

5.4. CSIT RF Tags Descriptions 481



CSIT REPORT, Release rls2001

5.4.22 Honeycomb Tags

HC_FUNC

Honeycomb functional test cases.

HC_NSH

Honeycomb NSH test cases.

HC_PERSIST

Honeycomb persistence test cases.

HC_REST_ONLY

(Exclusion tag) Honeycomb test cases that cannot be run in Netconf mode using ODL client for Restfconf
-> Netconf translation.

482 Chapter 5. CSIT Framework



[Ixc] Linux Containers10

BIBLIOGRAPHY

[Ixcnamespace] Resource management: Linux kernel Namespaces and cgroups?1?.

[stgraber] LXC 1.0: Blog post series!1?,

[Ixcsecurity] Linux Containers Security12.

[capabilities] Linux manual - capabilities - overview of Linux capabilities

[cgroup1] Linux kernel documentation: cgroupst?®®.

[cgroup2] Linux kernel documentation: Control Group v2116,

[selinux] SELinux Project Wiki?”.

[Ixcsecfeatures] LXC 1.0: Security features®'é,

[Ixcsource] Linux Containers sourcell?.
[apparmor] Ubuntu AppArmor?2°,
[seccomp] SECure COMPuting with filters!?1,

[docker] Docker!?2,

[k8sdoc] Kubernetes documentation23.
[TWSLink] TWSté>

[dockerhub] Docker hub¢®
[fdiocsitgerrit] FD.io/CSIT gerrit'®’
[fdioregistry] FD.io registy

[JenkinsSlaveDcrFile] jenkins-slave-dcr-file1®

110 https://linuxcontainers.org/

111 https://www.cs.ucsb.edu/~rich/class/cs293b-cloud/papers/Ixc-namespace.pdf
12 https://stgraber.org/2013/12/20/Ixc- 1-0-blog- post-series/

113 https://linuxcontainers.org/Ixc/security/

114 http:/man7.org/linux/man-pages/man7/capabilities.7.html

115 https:/www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt

116 https://www.kernel.org/doc/Documentation/cgroup-v2.txt

117 http:/selinuxproject.org/page/Main_Page

118 https://stgraber.org/2014/01/01/Ixc- 1-0-security-features/

119 https://github.com/Ixc/Ixc

120 https://wiki.ubuntu.com/AppArmor

121 https: /www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt

122 https: //www.docker.com/what-docker

123 https:/kubernetes.io/docs/home/

165 https://wiki.fd.io/view/CSIT/TWS

166 https://hub.docker.com/

167 https://gerrit.fd.io/r/CSIT

168 https://github.com/snergfdio/multivppcache/blob/master/ubuntu18/Dockerfile

483


https://linuxcontainers.org/
https://www.cs.ucsb.edu/~rich/class/cs293b-cloud/papers/lxc-namespace.pdf
https://stgraber.org/2013/12/20/lxc-1-0-blog-post-series/
https://linuxcontainers.org/lxc/security/
http://man7.org/linux/man-pages/man7/capabilities.7.html
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v2.txt
http://selinuxproject.org/page/Main_Page
https://stgraber.org/2014/01/01/lxc-1-0-security-features/
https://github.com/lxc/lxc
https://wiki.ubuntu.com/AppArmor
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
https://www.docker.com/what-docker
https://kubernetes.io/docs/home/
https://wiki.fd.io/view/CSIT/TWS
https://hub.docker.com/
https://gerrit.fd.io/r/CSIT
registry.fdiopoc.net
https://github.com/snergfdio/multivppcache/blob/master/ubuntu18/Dockerfile

CSIT REPORT, Release rls2001

[CsitShimDcrFile] csit-shim-dcr-file16?
[CsitSutDcrFile] csit-sut-dcr-file1”0

[ansiblelink] ansiblel7!

[fdiocsitansible] Fd.io/CSIT ansible1’2
[inteli40e] Intel i40el73

[pciids]  pciidsl74

169 https://github.com/snergfdio/multivppcache/blob/master/csit-shim/Dockerfile
170 https:/github.com/snergfdio/multivppcache/blob/master/csit-sut/Dockerfile
171 https:/www.ansible.com/

172 https://git.fd.io/csit/tree/resources/tools/testbed- setup/ansible

173 https:/downloadmirror.intel.com/26370/eng/readme.txt

174 http://pci-ids.ucw.cz/v2.2/pci.ids

484 Bibliography


https://github.com/snergfdio/multivppcache/blob/master/csit-shim/Dockerfile
https://github.com/snergfdio/multivppcache/blob/master/csit-sut/Dockerfile
https://www.ansible.com/
https://git.fd.io/csit/tree/resources/tools/testbed-setup/ansible
https://downloadmirror.intel.com/26370/eng/readme.txt
http://pci-ids.ucw.cz/v2.2/pci.ids

	Introduction
	Report History
	Report Structure
	Test Scenarios
	Physical Testbeds
	Test Methodology

	VPP Performance
	Overview
	Release Notes
	Packet Throughput
	Speedup Multi-Core
	Packet Latency
	Comparisons
	Throughput Trending
	Test Environment
	Documentation

	DPDK Performance
	Overview
	Release Notes
	Packet Throughput
	Packet Latency
	Comparisons
	Throughput Trending
	Test Environment
	Documentation

	VPP Device
	Overview
	Release Notes
	Integration Tests
	Documentation

	CSIT Framework
	Design
	Test Naming
	Presentation and Analytics
	CSIT RF Tags Descriptions

	Bibliography

